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Conventional Supervision in Vision Tasks
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Labels

• Conventional supervision typically requires label annotation

- However, label annotation is expensive
- E.g.) According to OpenAI,  +25,000 workers for 14M images
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Natural Language Supervision

Neural 
networks

1
1

0.74

0.26

dog

cat

Raw text

• What if we use raw text for improving visual representations?
- Vast amount of data available on web
- It does not require labor-intensive annotations
- Improvement of quality of visual representation  
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Desai et al., VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021

VirTex [CVPR 2021]
• Leveraging sementically dense (text) information

• Training with 10x fewer data points

Joint learning of visual and text information

How to get
High-quality dataset?
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Semantically Sparse vs. Dense

• When use conventional supervision, model doesn’t know dense semantics
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Semantically Sparse vs. Dense

• When use conventional supervision, model doesn’t know dense semantics

- Image captions provides additional information: 
“orange and white cat near a plate and a white cake”
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Semantically Sparse vs. Dense

• When use conventional supervision, model doesn’t know dense semantics

- Image captions provides additional information: 
“orange and white cat near a plate and a white cake”

• How to leverage dense semantics for visual representation learning?
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Short Recap of Transfer Learning
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Overview of VirTex

Joint text learning
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Overview of VirTex

• Here, we drop text learner (transformer) for transfer
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VirTex Architecture
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VirTex Architecture

Visual backbone

• ResNet-50 is used for visual learning backbone
• Visual features roughly have 7x7 different positions
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VirTex Architecture

Bidirenctional encoding

• 2 Transformers are used for training (bidirection)
• Two outputs are not aggregated: We don’t need inference (only training is enough) 
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VirTex Architecture

Masked language model (MLM)

• Basically, same architecture as original transformer decoder
• Cross-attention between visual features and text instead
• Shallow transformer layer (1-2 layer): as visual part is important
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SOTA Performance w/ Fewer Data

• Caption: hot many captions for each image
• ImageNet-sup: accuracy based on conventional supervision
• Can it exceeds performance of supervision?
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Ablation Study

• Bi-direction is important
• L=1 (very shallow)

is enough for Transformer
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Visualization of Attention Map

• Upscale attention map & overlap on image
• Visual attention aligns well with text part
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Desai et al., VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

VirTex [CVPR 2021]
• Leveraging sementically dense (text) information

• Training with 10x fewer data points

CLIP [ICML 2021]
• Utilize text information for learning

• For zero-shot prediction 

Joint learning of visual and text information

How to get
High-quality dataset?

How to achieve
zero-shot transfer for 
downstream tasks?
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Pretraining

Transfer (Downstream tasks)
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CLIP

What is Zero-Shot Learning?

Zero shot: No fine-tuning 
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Dataset Collection

• Note: we don’t leverage dense text now

• Worries about data quality?

Typical image dataset size: 3.5 billion, while 100K for MS-COCO (not enough)

OpenAI collects 400M (image, text) pair via Web querying  
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Overview of CLIP
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Overview of CLIP
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CLIP: Contrastive Pre-Training

N different images

• ResNet50 for backbone visual 

encoder

N different texts

• Transformer: encode each text sentence 

(word or sentence)

Representation of a text
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CLIP: Contrastive Pre-Training

Supervised training

• Cross-entropy loss

supervision
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CLIP: Create Dataset • Label to text: To achieve zero-shot transfer, formats 

should be matched (dataset should be created)

Select text with the most highest value

• Perform zero-shot prediction with unseen data
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Evaluations

• Fine-tuning on ResNet50 vs. CLIP

- CLIP (zero-shot) even outperforms few-shot learning

- 4-shot is used for the baseline

- Outperforms in 16/27 datasets

• Weak performance on several

specialized, complex or abstract tasks

- Satellite image classification (EuroSAT and RESISC45),
lymph node tumor detection (PatchCamelyon), 
counting objects in synthetic scenes (CLEVRCounts), ...
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Evaluations

• Robustness to natural distribution shift

- Reduce robustness gap by up to 75% 

- zero-shot model should not be able to exploit spurious correlations or patterns that hold 
only on a specific distribution, since it is not trained on that distribution
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• Jointly learning visual representation with text 

information is very helpful

• CLIP (a zero-shot model) is good for learning domain-

agonostic, general feature of images.

• (VirTex) Exploiting dense semantics via text sentence 

is much helpful



Thank you!

jindeok6@yonsei.ac.kr

"Success is not final, failure is not fatal: 
it is the courage to continue that counts.“

- Winston Churchill
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