Joint Learning of Visual and Text Representations

Ph.D candidate in Computational Science and Engineering Yonsei Univ.

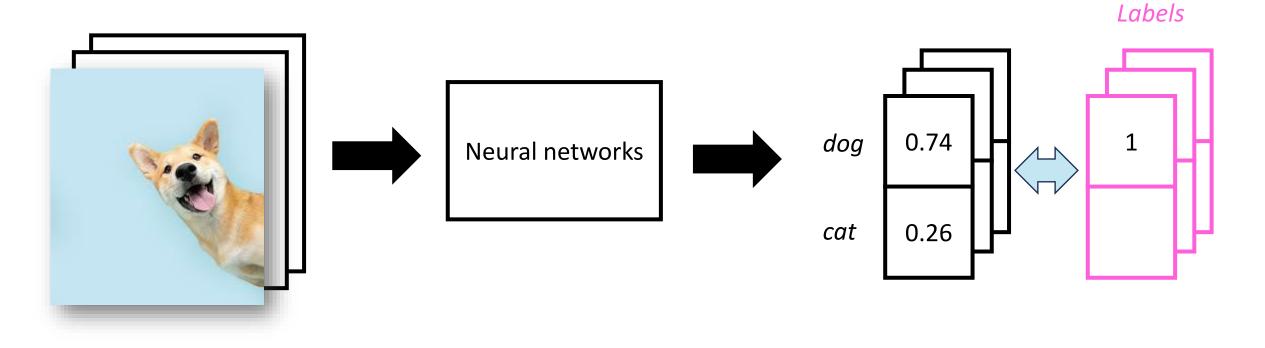
Jin-Duk Park

Reading group material

Introduction

Conventional Supervision in Vision Tasks

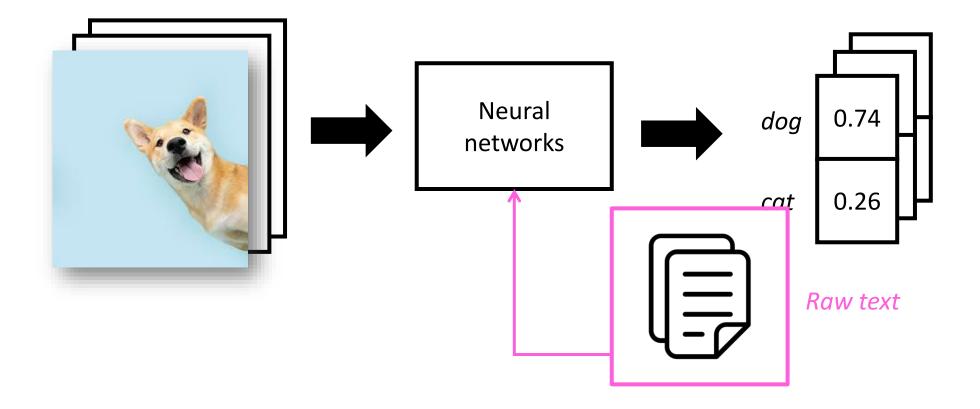
- Conventional supervision typically requires label annotation
 - However, label annotation is expensive
 - E.g.) According to OpenAI, +25,000 workers for 14M images



Introduction

Natural Language Supervision

- What if we use **raw text** for improving visual representations?
 - Vast amount of data available on web
 - It **does not require** labor-intensive annotations
 - Improvement of quality of visual representation



Joint learning of visual and text information

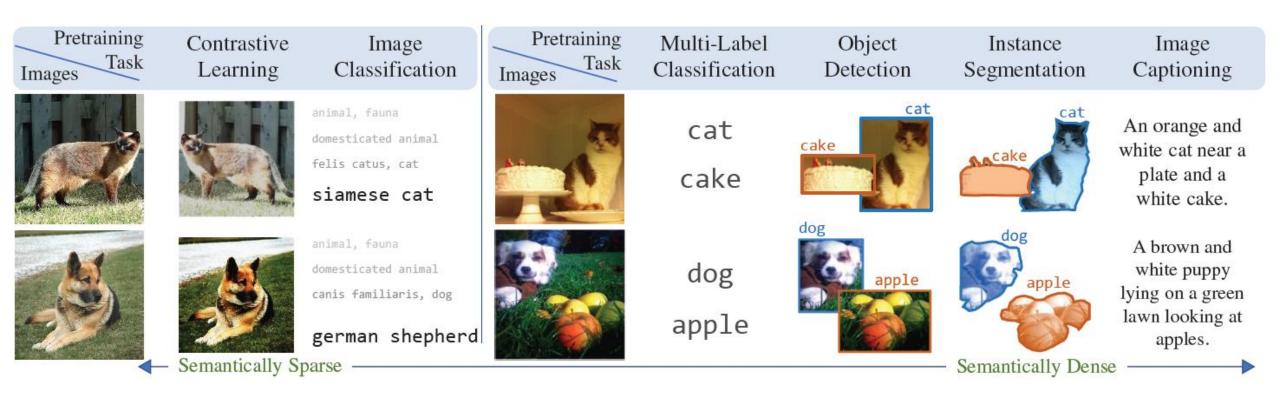
How to get High-quality dataset?

VirTex [CVPR 2021]

- Leveraging sementically dense (text) information
 - Training with **10x fewer data points**

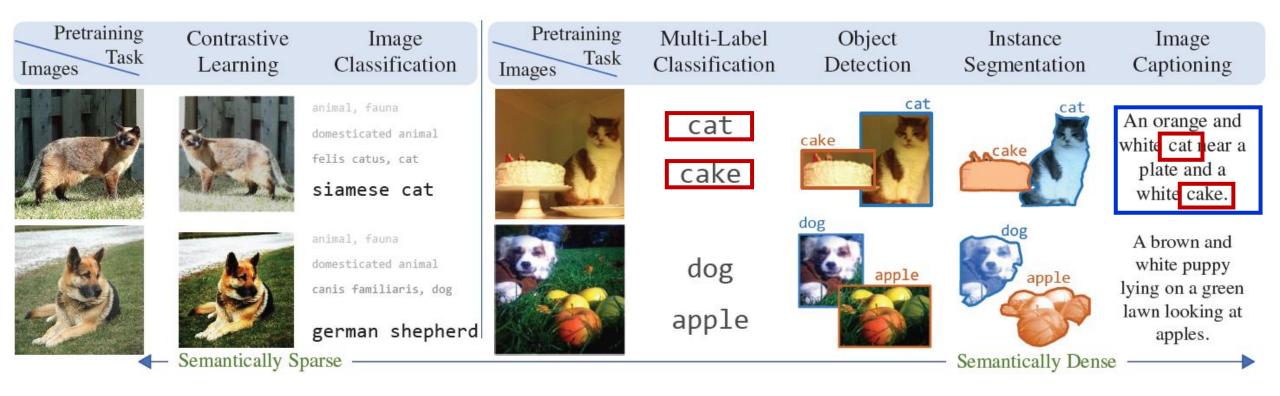
Semantically Sparse vs. Dense

• When use conventional supervision, model doesn't know dense semantics



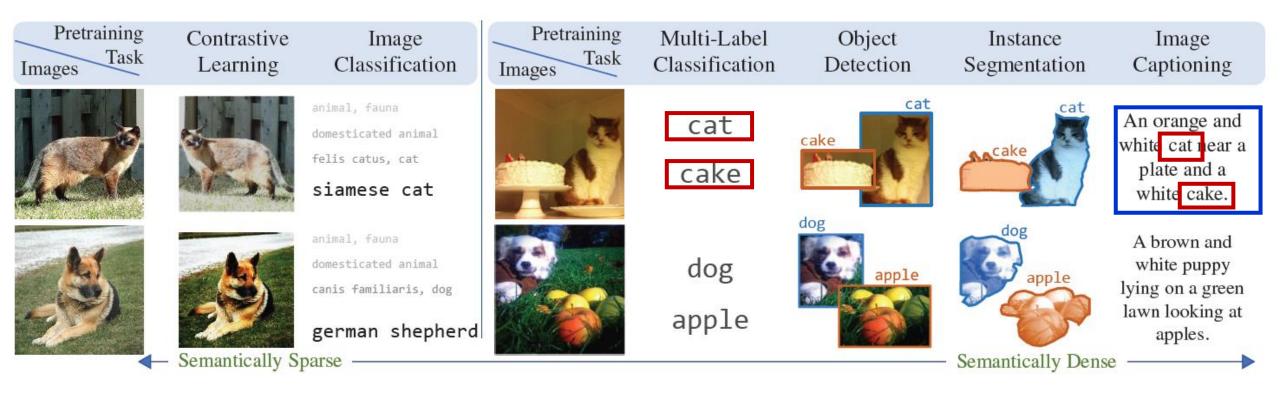
Semantically Sparse vs. Dense

- When use conventional supervision, model doesn't know dense semantics
 - Image captions provides additional information:
 "orange and white cat near a plate and a white cake"



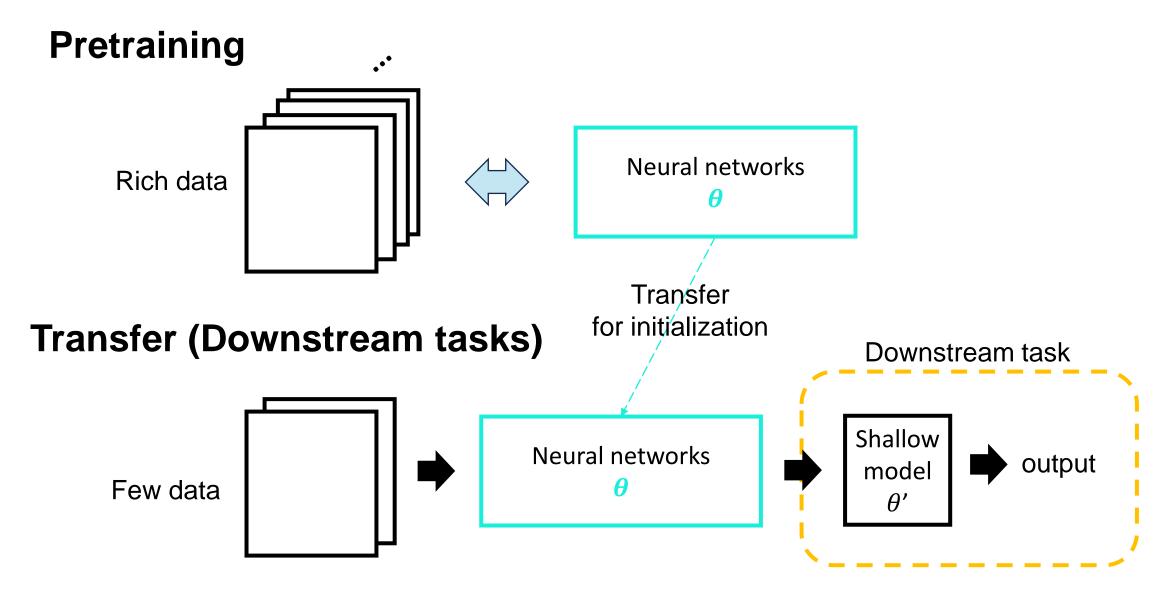
Semantically Sparse vs. Dense

- When use conventional supervision, model doesn't know *dense* semantics
 - Image captions provides additional information:
 "orange and white cat near a plate and a white cake"

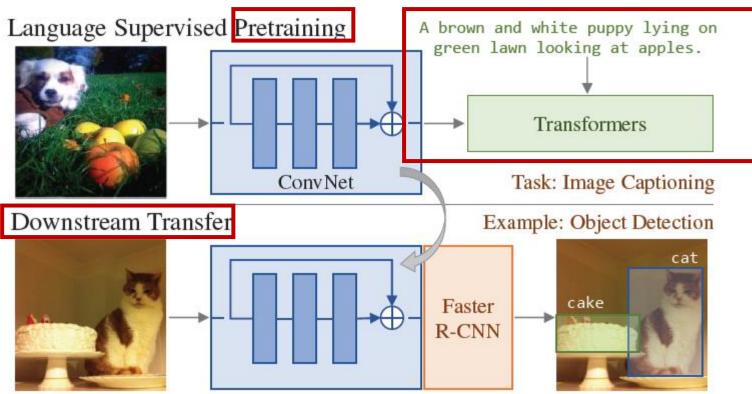


• How to leverage dense semantics for visual representation learning?

Short Recap of Transfer Learning



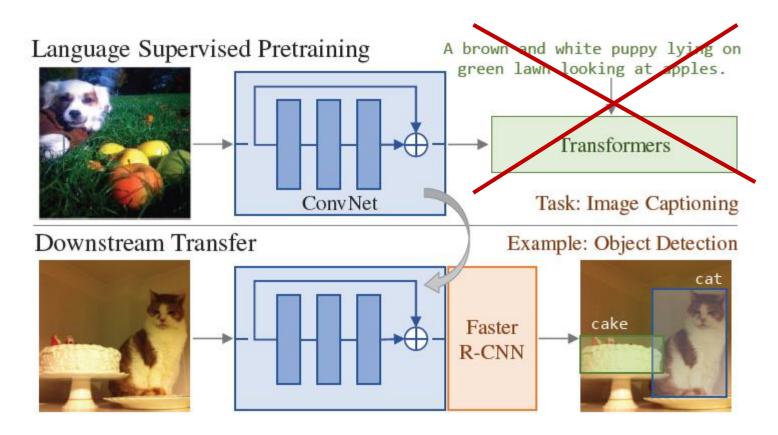
VirTex Overview of VirTex



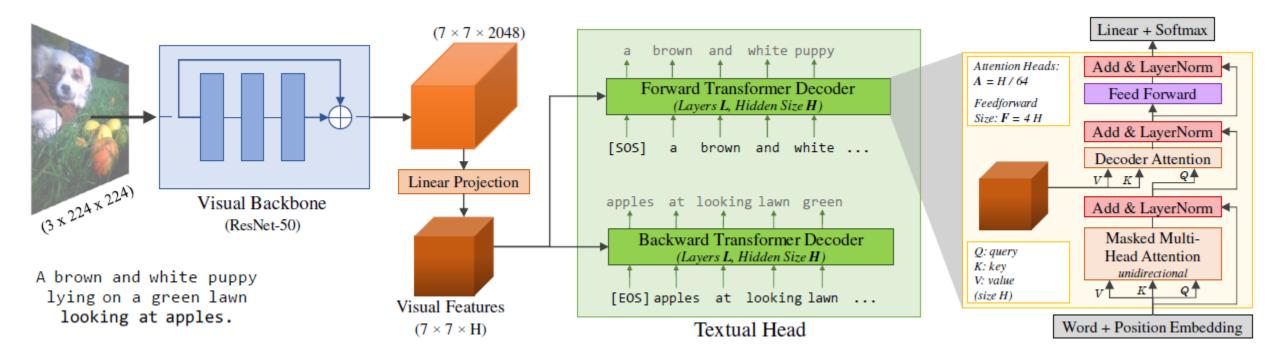
Joint text learning

VirTex Overview of VirTex

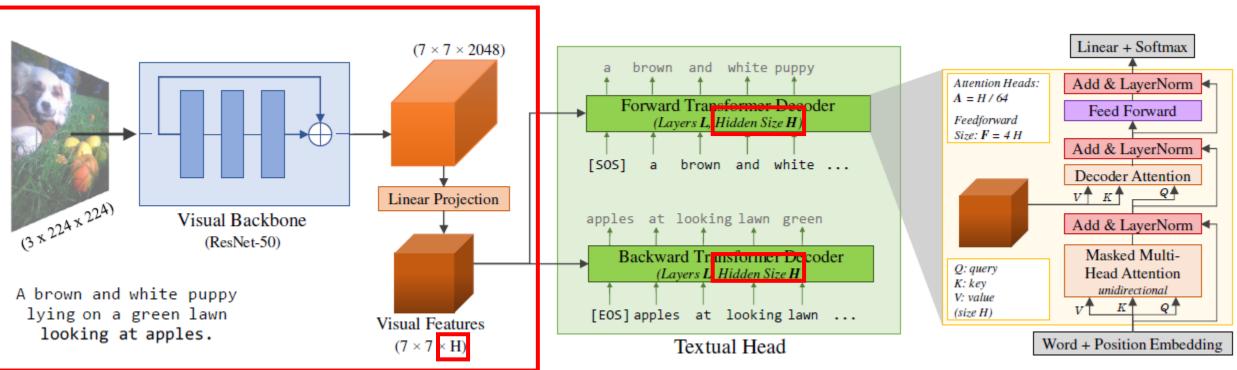
• Here, we drop text learner (transformer) for transfer



VirTex VirTex Architecture



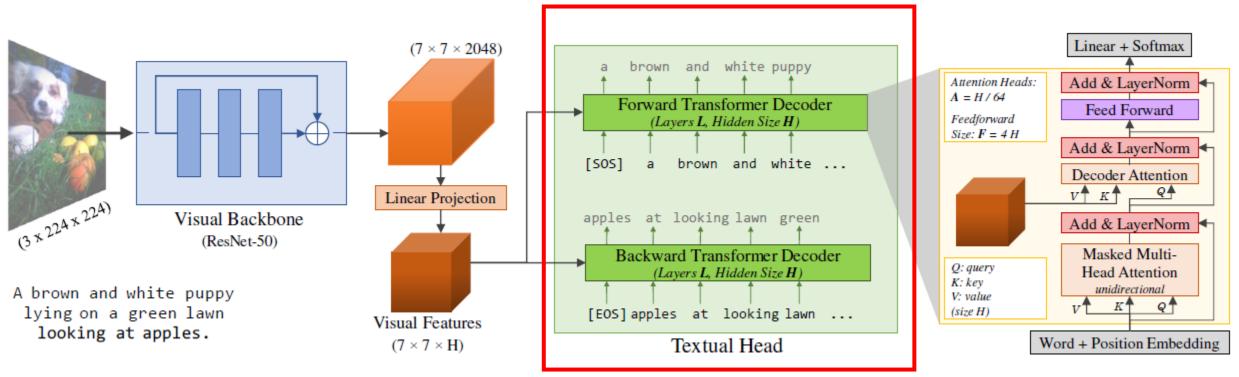
VirTex Architecture



Visual backbone

- ResNet-50 is used for visual learning backbone
- Visual features roughly have 7x7 different positions

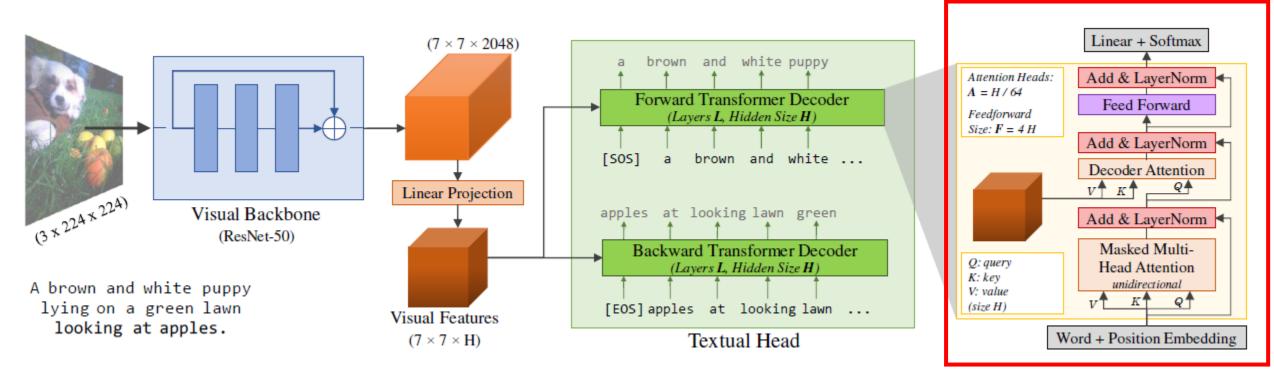
VirTex Architecture



Bidirenctional encoding

- 2 Transformers are used for training (bidirection)
- Two outputs are **not aggregated**: We don't need inference (only training is enough)

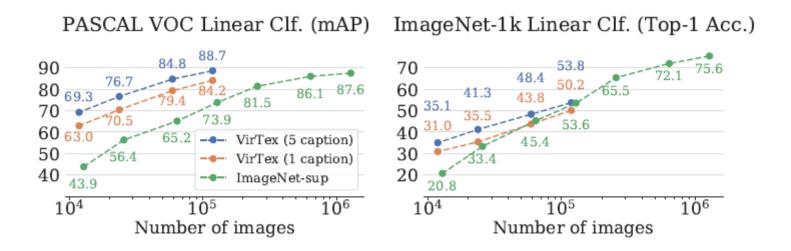
VirTex VirTex Architecture



Masked language model (MLM)

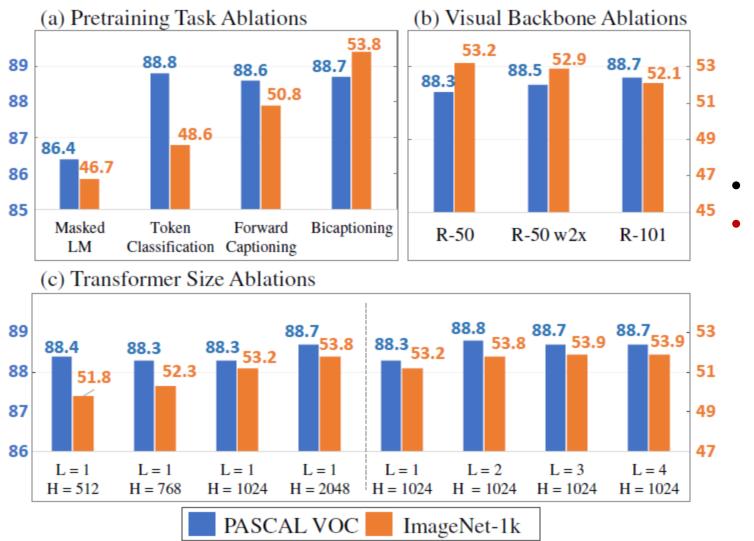
- Basically, same architecture as original transformer decoder
- Cross-attention between visual features and text instead
- **Shallow** transformer layer (1-2 layer): as visual part is important

VirTex SOTA Performance w/ Fewer Data



- Caption: hot many captions for each image
- ImageNet-sup: accuracy based on conventional supervision
- Can it exceeds performance of supervision?

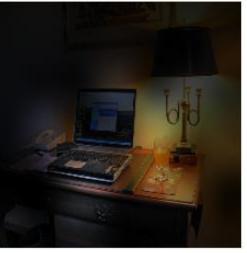
Ablation Study

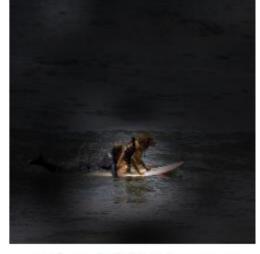


Bi-direction is important L=1 (very shallow) is enough for Transformer

VirTex Visualization of Attention Map

VirTex predicted captions (R-50, L = 1, H = 512), forward transformer decoder





a cat laying on a pair of blue **shoes**

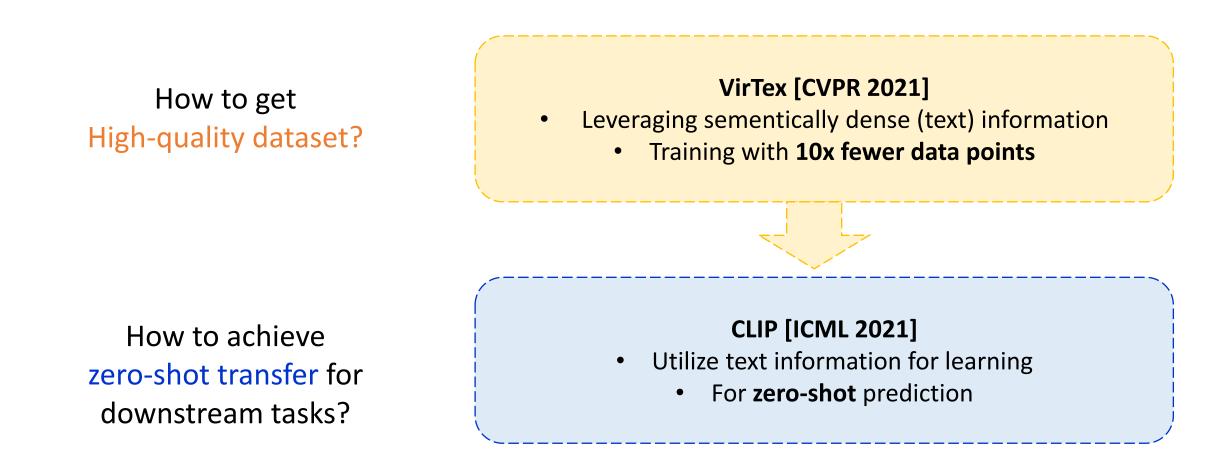
a laptop computer sitting on top of a desk

an orange is sitting on the side of a **road**

a dog **riding** on a surfboard in the ocean

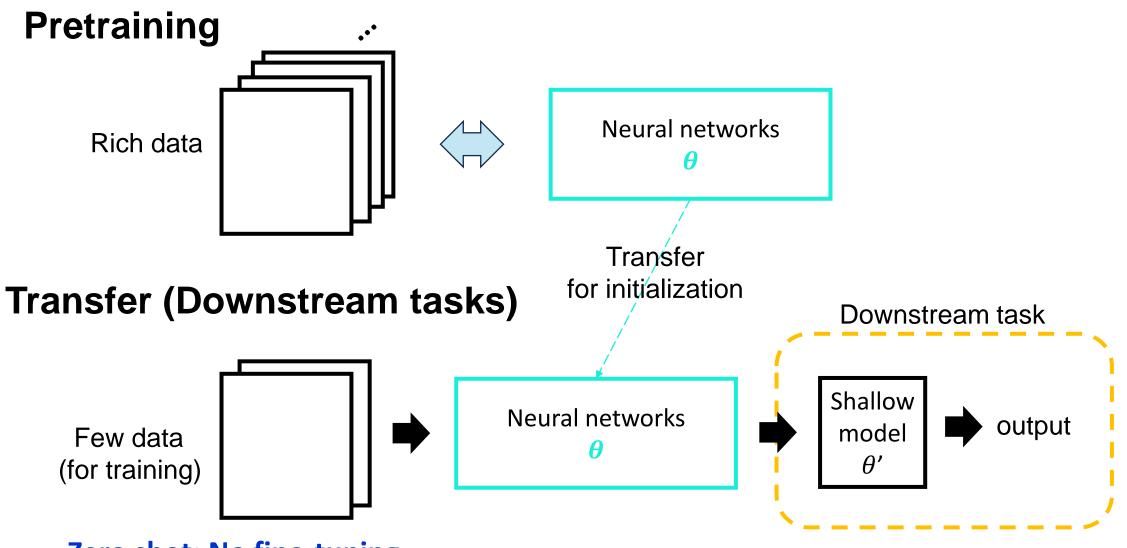
- Upscale attention map & overlap on image
- Visual attention aligns well with text part

Joint learning of visual and text information



Desai et al., VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021 Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 CLIP

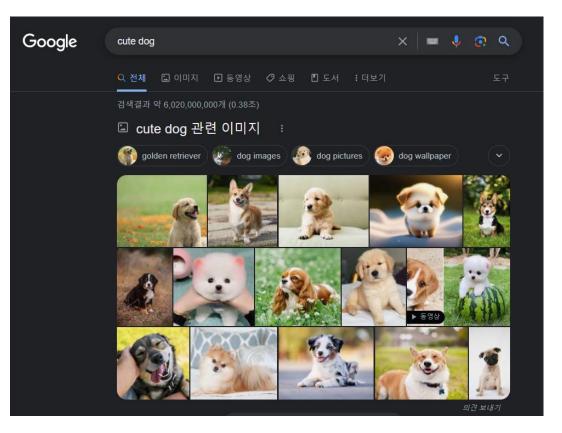
What is **Zero-Shot** Learning?



Dataset Collection

Typical image dataset size: 3.5 billion, while 100K for MS-COCO (not enough)

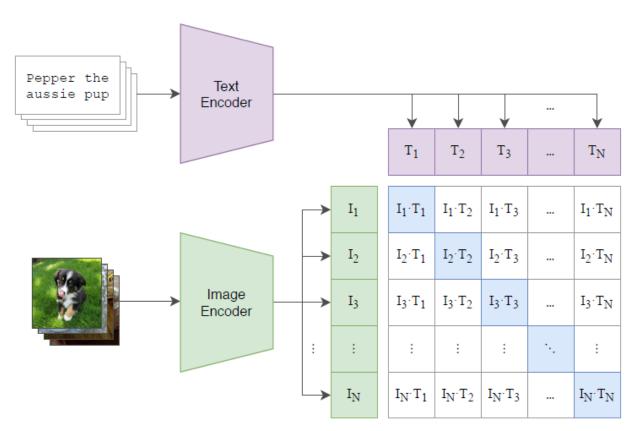
OpenAI collects 400M (image, text) pair via Web querying



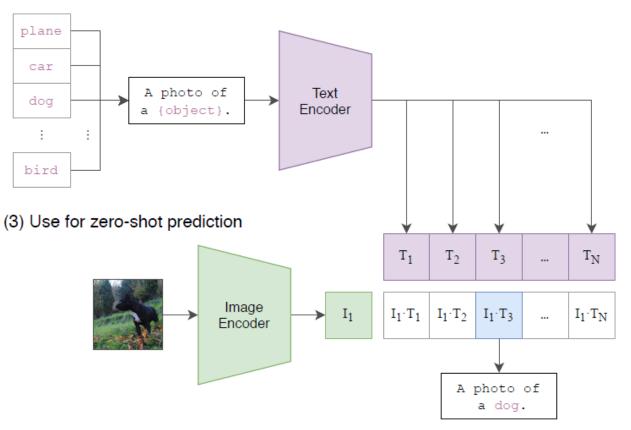
- Note: we don't leverage dense text now
- Worries about data quality?

Overview of CLIP

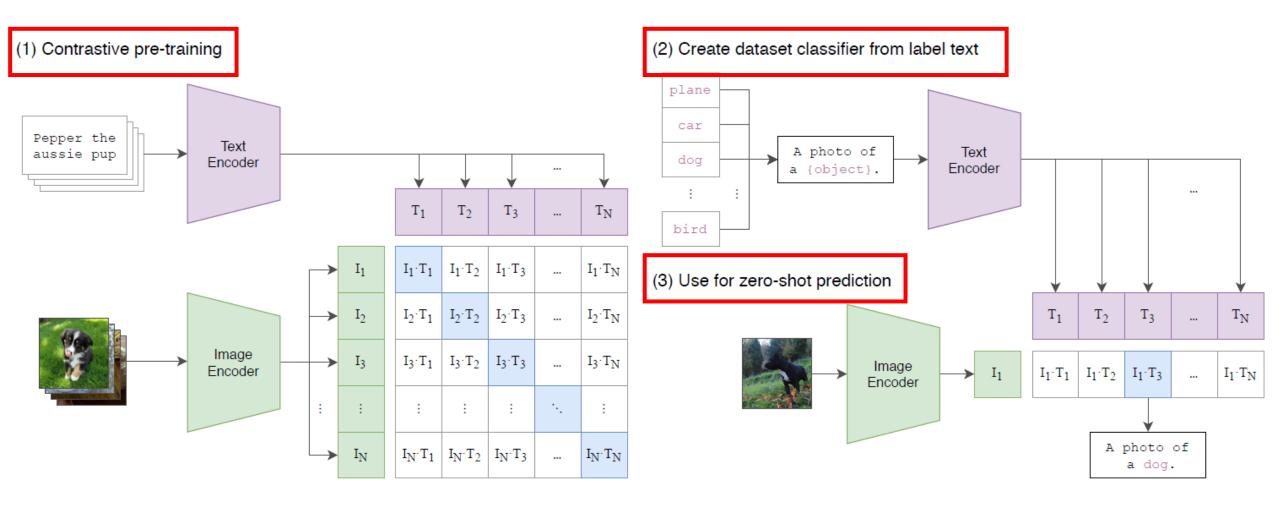
(1) Contrastive pre-training



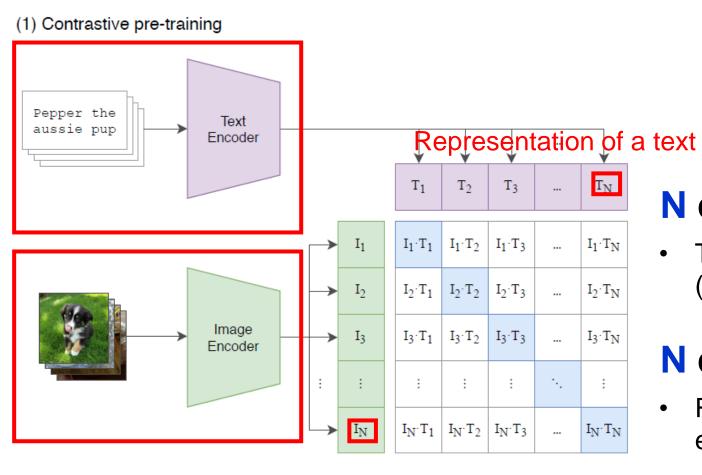
(2) Create dataset classifier from label text



Overview of CLIP



CLIP: Contrastive Pre-Training



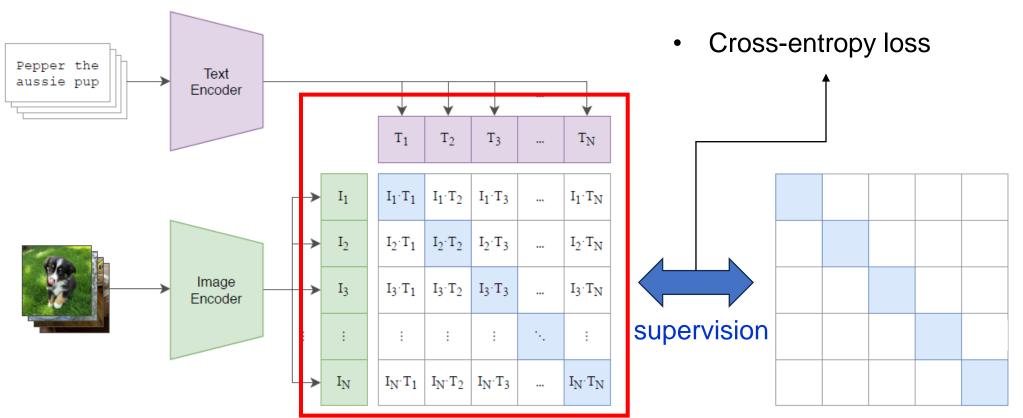
N different texts

• Transformer: encode each text sentence (word or sentence)

N different images

 ResNet50 for backbone visual encoder

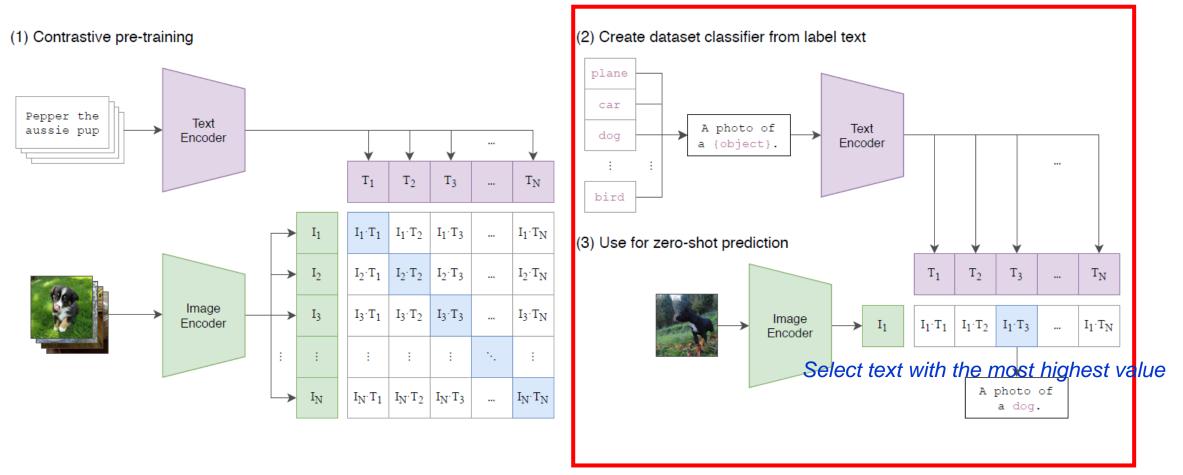
(1) Contrastive pre-training



Supervised training

CLIP: Create Dataset

 Label to text: To achieve zero-shot transfer, <u>formats</u> <u>should be matched</u> (dataset should be created)



• Perform zero-shot prediction with unseen data

Evaluations

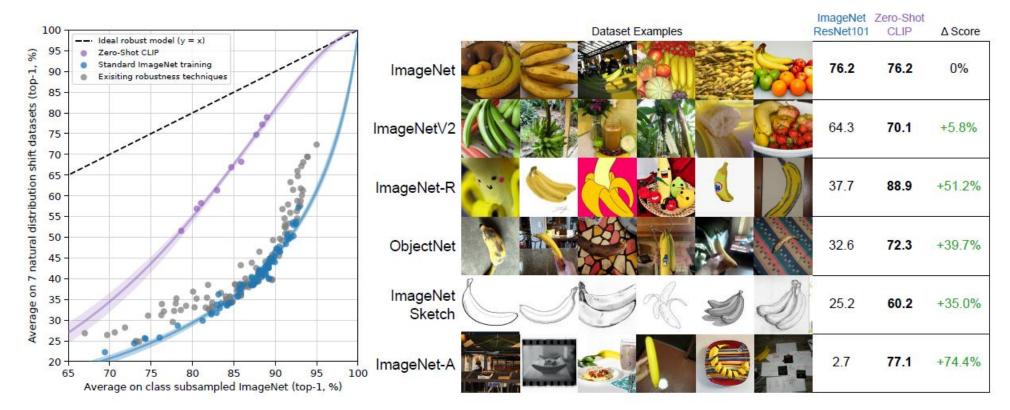
StanfordCars	+28.9
Country211	+23.2
Food101	+22.5
Kinetics700	+14.5
SST2	+12.4
SUN397	+7.8
UCF101	+7.7
HatefulMemes	+6.7
CIFAR10	+3.9
CIFAR100	+3.0
STL10	+3.0
FER2013	+2.8
Caltech101	+7.7
ImageNet	+1.1
OxfordPets	+0.5
PascalVOC2007	Birdsnap
-3.2	MNIST
-11.3	FGVCAircraft
-11.9	RESISC45
-12.5	Flowers102
-16.6	DTD
-18.2	CLEVRCounts
-18.4	GTSRB
-19.5	PatchCamelyon
-34.0	KITTI Distance
-37.1	EuroSAT
-40 -30 -20 -10 0) 10 20 30 40
۵ Score (%) Zero-Shot CLIP vs. Linear Probe on ResNet50	

Figure 4. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet50 features on 16 datasets, including ImageNet.

- Fine-tuning on ResNet50 vs. CLIP
 - 4-shot is used for the baseline
 - CLIP (zero-shot) even outperforms few-shot learning
 - Outperforms in 16/27 datasets
- Weak performance on several specialized, complex or abstract tasks
 - Satellite image classification (EuroSAT and RESISC45), lymph node tumor detection (PatchCamelyon), counting objects in synthetic scenes (CLEVRCounts), ...

Evaluations

- Robustness to natural distribution shift
 - Reduce robustness gap by up to 75%
 - zero-shot model should not be able to exploit spurious correlations or patterns that hold only on a specific distribution, since it is not trained on that distribution



Takeaways

<u>Takeaways</u>

- Jointly learning visual representation with text information is very helpful
- (VirTex) Exploiting dense semantics via text sentence is much helpful
- CLIP (a zero-shot model) is good for learning domainagonostic, general feature of images.

"Success is not final, failure is not fatal: it is the courage to continue that counts." - Winston Churchill

Thank you!

jindeok6@yonsei.ac.kr