Joint Learning of
Visual and Text Representations

Ph.D candidate in Computational Science and Engineering
Yonsei Univ.

Jin-Duk Park

Reading group material



Conventional Supervision in Vision Tasks

 Conventional supervision typically requires label annotation

- However, label annotation is expensive
- E.g.) According to OpenAl, +25,000 workers for 14M images
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Natural Language Supervision

 What if we use raw text for improving visual representations?
- Vast amount of data available on web

- It does not require labor-intensive annotations
- Improvement of quality of visual representation
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Joint learning of visual and text information

VirTex [CVPR 2021]
 Leveraging sementically dense (text) information
* Training with 10x fewer data points

How to get

Desai et al., VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021



Semantically Sparse vs. Dense

* When use conventional supervision, model doesn’t know dense semantics
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Semantically Sparse vs. Dense

 When use conventional supervision, model doesn’t know dense semantics

- Image captions provides additional information:
“orange and white cat near a plate and a white cake”
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Semantically Sparse vs. Dense

 When use conventional supervision, model doesn’t know dense semantics

- Image captions provides additional information:
“orange and white cat near a plate and a white cake”

Pretraining  Contrastive Image Pretraining  Multi-Label Object Instance Image
Images Task Learning Classification Images Task  Classification Detection Segmentation Captioning
m An orange and
i whiear a
cake plate and a
siamese cat whit
A brown and
dog white puppy
canis familiaris, dog lying on a green
lawn looking at
german shepherd apple apples.
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* How to leverage dense semantics for visual representation learning?




Short Recap of Transfer Learning

Pretraining

Rich data <:> Neural networks

Transfer

for initialization

Transfer (Downstream tasks) Downstream task

Shallow

» Neural networks » model »output

Few data 5’




Overview of VirTex

Joint text learning
Language SupervisedlEretrainingl A brown and white puppy lying on

green lawn looking at apples.

——> Transformers

ConvNet % Task: Image Captioning

) Example: Object Detection

Faster
R-CNN




Overview of VirTex

 Here, we drop text learner (transformer) for transfer
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ConvNet % Task: Image Captioning

Downstream Transfer ] Example: Object Detection

Faster
R-CNN
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VirTex Architecture

(7 =7 = 2048)

a brown and white puppy

t

Linear Projection

Visual Backbone
(ResMNet-50)

[505] a brown and white ...

apples at looking lawn green

A brown and white puppy
lying on a green lawn
looking at apples.

Visual Features
(77 =H)

[E0S] apples at looking lawn

Textual Head

Antention Heads:
A=H:d

Feedforward
Size: F=4H

Linear + Softmax

*
|mm&L§mmmnh
| Feed Forward |

[ S—
| Add & LayerNorm |«
| Decoder Attention |

vt 5t b

IMM&LFmanh

Masked Mult-
Q: query Head Attention
K:kev i
Ve value un&ﬂreflmaf
(size H) vk} o
Word + Position Embedding

11




VirTex Architecture
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apples at looking lawn green

A brown and white puppy
lying on a green lawn
looking at apples.

Visual Features

[E0S] apples at looking lawn ...

Visual backbone

Textual Head

 ResNet-50 is used for visual learning backbone
e Visual features roughly have 7x7 different positions

Linear + Softmax
*
Anention Heads: | Add & LayerNorm |1-
A=H:d I
Feedforward | Sl |
Size: F=4H 1l—
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VirTex Architecture
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a brown and white puppy
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A brown and white puppy
lying on a green lawn
looking at apples.

Visual Features
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[E0S] apples at looking lawn ...

Textual Head

2 Transformers are used for training (bidirection)
 Two outputs are not aggregated: We don’t need inference (only training is enough)
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VirTex Architecture

(7 =7 = 2048)

a brown and white puppy
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Forward Transformer Decoder

Linear Projection

. Visual Backbone ¢
3 * (ResMet-50)
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[505] a brown and white ...

apples at looking lawn green
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Backward Transformer Decoder

A brown and white puppy
lying on a green lawn

looking at apples. Visual Features

(7 =T =H)

Masked language model (MLM)

* Basically, same architecture as original transformer decoder

1 (Layers L, Hidden Size H)

1T 1T 1 1

[EOS] apples at looking lawn ...

Textual Head

e Cross-attention between visual features and text instead

 Shallow transformer layer (1-2 layer): as visual part is important
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SOTA Performance w/ Fewer Data

PASCAL VOC Linear CIf. (mAP) ImageNet-1k Linear CIf. (Top-1 Acc.)
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 Caption: hot many captions for each image

 ImageNet-sup: accuracy based on conventional supervision
 (Can it exceeds performance of supervision?



Ablation Study
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Bi-direction is important
L=1 (very shallow)
is enough for Transformer
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Visualization of Attention Map

VirTex predicted captions (R-50, L = 1, H = 512), forward transformer decoder

a cat laying on a a laptop computer an orange 1is a dog riding on a
pair of blue shoes sitting on top of a sitting on the side surfboard in the
desk of a road ocean

 Upscale attention map & overlap on image
* Visual attention aligns well with text part
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INDEX

Joint learning of visual and text information

VirTex [CVPR 2021]

How to get . : : :
 Leveraging sementically dense (text) information
e Training with 10x fewer data points
{/ ______________________________________________
zero-shot transfer for | * Utilize text information f-or-learnmg
| * For zero-shot prediction
downstream tasks? |

—_— e e o e o e e e e e e e e — — — — — — — — —

Desai et al., VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021
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What is Zero-Shot Learning?

Pretraining

Rich data

Transfer (Downstream tasks)

Few data
(for training)

5

Zero shot: No fine-tuning

&

Neural networks

Transfer

Neural networks

for initialization

»

Downstream task

Shallow

model
HI

» output



Dataset Collection

Typical image dataset size: 3.5 billion, while 100K for MS-COCO (not enough)

OpenAl collects 400M (image, text) pair via Web querying

Google cute dog

& cute dog &3 O|O| X|

ﬂ golden retriever 6 dog images 3 dog pictures @ dog wallpaper
.

* Note: we don’t leverage dense text now
« Worries about data quality?
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Overview of CLIP

(1) Contrastive pre-training

Peppsr the
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Y
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Encoder
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(2) Create dataset classifier from label text
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Overview of CLIP

| (1) Contrastive pre-training
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(2) Create dataset classifier from label text
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CLIP: Contrastive Pre-Training

(1) Contrastive pre-training

Pepper the

Text ‘

N different texts

Transformer: encode each text sentence
(word or sentence)

N different images

ResNet50 for backbone visual
encoder

aussis pup > Encod :
nooder ‘ Representation pf a text
\ 4 L 4 ¥ ¥
nn s . |G
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Image
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CLIP: Contrastive Pre-Training

(1) Contrastive pre-training Su p erv | S Ed tral N | N g

‘ « Cross-entropy loss
Pepper the
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CLIP: Create Dataset

(1) Contrastive pre-training

Pepper the
aussis pup

h J

Text ‘

Encoder ‘

Image

Y

h 4

Encoder

Y

v

lue

« Label to text: To achieve zero-shot transfer, formats
should be matched (dataset should be created)
(2) Create dataset classifier from label text
: «| A photo of pﬁﬁhh;;;hihw
a {object}. Encoder
Y Y A4 4
T T; T3 Ty
& e o (3) Use for zero-shot prediction v v v v
I, LT, | LT, | I, T; L, Ty T, | T, | Ty =
I LTy | 3Ty | I3Ts 3Ty ‘ E',T;i%‘?;r I LTy | 4T, |1 Ts I, Tn
~__Select text with the_m&sj_highest ¢
Iy INTy | INT2 | InT3 InTy -- & photo of

a dog.

Perform zero-shot prediction with unseen data

25



Evaluations

StanfordCars +28.9
Country211 +23.2
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CIFARLOO B+ 3.0
STL1O B+ 3.0
FERZ2013 @+2.8
Caltech101 f+2z.0
ImageNet §j+1.9
Oxfordpets [|+1.1
PascalvoCz007

Birdsnap
MMIST
FGWCAircraft
RESISCAS
Flowers102
DTD
CLEVRCounts
GTSRE
PatchCamelyon
KITTI Distance
EurGSIAT | |

T
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M i1
Zero-Shot CLIP vs.ILinear Probe on ResNet50 I

Figure 4. Zero-shot CLIP is competitive with a fully super-

vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet50 features on 16 datasets, including ImageNet.

Fine-tuning on ResNet50 vs. CLIP
4-shot is used for the baseline

CLIP (zero-shot) even outperforms few-shot learning

Outperforms in 16/27 datasets

Weak performance on several

specialized, complex or abstract tasks

Satellite image classification (EuroSAT and RESISC45),
lymph node tumor detection (PatchCamelyon),
counting objects in synthetic scenes (CLEVRCounts), ...
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Evaluations

* Robustness to natural distribution shift

- Reduce robustness gap by up to 75%

- zero-shot model should not be able to exploit spurious correlations or patterns that hold
only on a specific distribution, since it is not trained on that distribution

ImageNet Zero-Shot
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Takeaways

« Jointly learning visual representation with text
iInformation is very helpful

* (VirTex) Exploiting dense semantics via text sentence
IS much helpful

 CLIP (a zero-shot model) is good for learning domain-
agonostic, general feature of images.



"Success is not final, failure is not fatal:
it is the courage to continue that counts.”
- Winston Churchill

Thank you!
jindeok6@yonsei.ac.kr
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