Graph Filters and Its Parameterization

Ph.D candidate in Computational Science and Engineering Yonsei Univ.

Jin-Duk Park

This slides are made by referring to the following materials:

Youtube video: "Xiaowen Dong: Learning graphs from data: A signal processing perspective", https://www.youtube.com/watch?v=2ds4A11DSOw&list=PLe0J3_6vYq7tgrMvHC6M7w6Ncqsy38flm
 Shuman, David I., et al. "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains." IEEE signal processing magazine 30.3 (2013): 83-98.
 Bianchi, Filippo Maria, et al. "Graph neural networks with convolutional arma filters." IEEE transactions on pattern analysis and machine intelligence 44.7 (2021): 3496-3507.
 Tremblay, Nicolas, Paulo Gonçalves, and Pierre Borgnat. "Design of graph filters and filterbanks." Cooperative and Graph Signal Processing. Academic Press, 2018. 299-324.
 Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

Reading group material

Introduction

Filtering in Data

Noisy Image

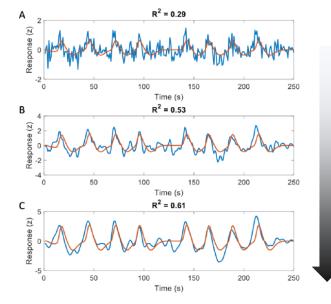
Gaussian Filtered

(Std. Dev. = 1.5)

Image data

						Brand	Ratings		
ID	Age	Gender	Preferred cola	Coca- Cola	Diet Coke	Coke Zero	Pepsi	Diet Pepsi	Pepsi Max
1	25 to 29	Female	Pepsi Max	2	5	2	3	1	4
2	45 to 49	Male	Pepsi Max	5	1	5	5	3	4
3	25 to 29	Female	Diet Coke	5	4	2	3	1	1
4	25 to 29	Female	Coca-Cola	4	2	2	2	2	2
5	55 to 64	Female	Diet Coke	3	4	3	3	4	2
6	55 to 64	Female	Diet Pepsi	3	3	3	3	4	4
7	50 to 54	Female	Coke Zero	2	3	5	2	2	2
8	35 to 39	Female	Coca-Cola	4	2	5	3	2	5
9	65 or more	Male	Diet Pepsi	5	5	3	5	5	3
10	45 to 49	Female	Coke Zero	4	4	4	5	5	3
11	45 to 49	Male	Coca-Cola	4	1	1	4	1	1
12	55 to 64	Male	Coca-Cola	5	2	2	5	2	2
13	55 to 64	Male	Coca-Cola	5	2	2	3	2	2
14	30 to 34	Male	Pepsi Max	3	2	5	3	3	5
15	65 or more	Female	Diet Pepsi	2	4	2	5	4	2

Tabular data



Low-pass filtered

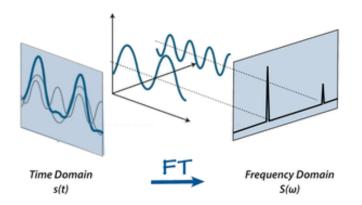
Time-series data

<u>Data filtering</u> is a prominent technique that can be applicable for various types of data

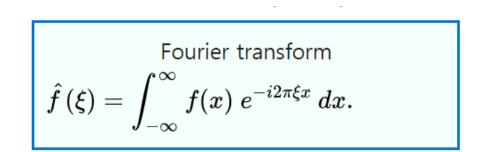
https://www.researchgate.net/figure/Low-pass-filtering-the-time-series-improves-goodness-of-fit-quantified-by-R-2-The-same_fig1_336026361

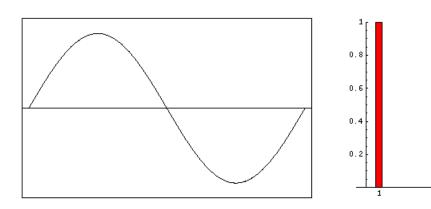
Preliminary

Fourier Transform



A mathematical procedure a signal in the time domain to a complex number in the frequency domain

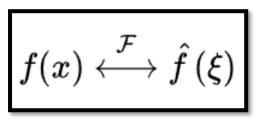




Graph Spectral Decomposition

- Graph is a flexible model for representing data in many problems
- Fourier Transform

A mathematical procedure a signal in the time domain to a complex number in the frequency domain

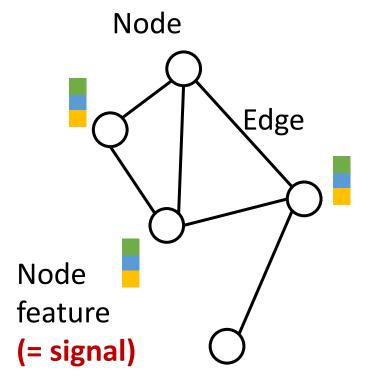


Graph Fourier Transform (GFT)

How to analyze graph in frequency domain, via GFT?

Graph Signal Processing

Graph and Graph Signals



• Nodes (vertices), edges

$$G = (V, E)$$

• Graph signal

$$\mathbf{x} = x_1, x_2, \dots$$

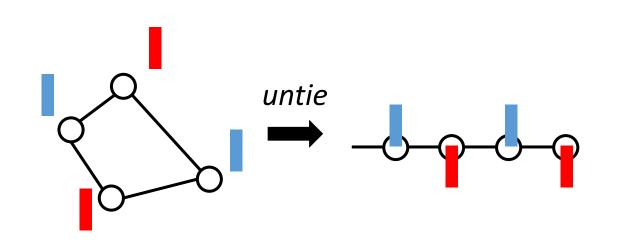
Graph Signal Processing

Graph Frequency

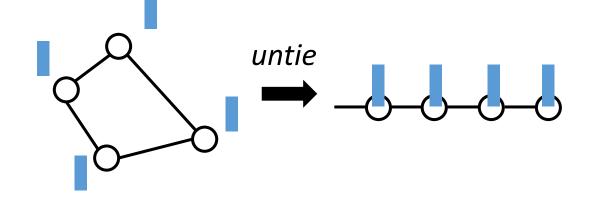
• Graph signal

$$\mathbf{x} = x_1, x_2, \dots$$

Low Frequency



High Frequency



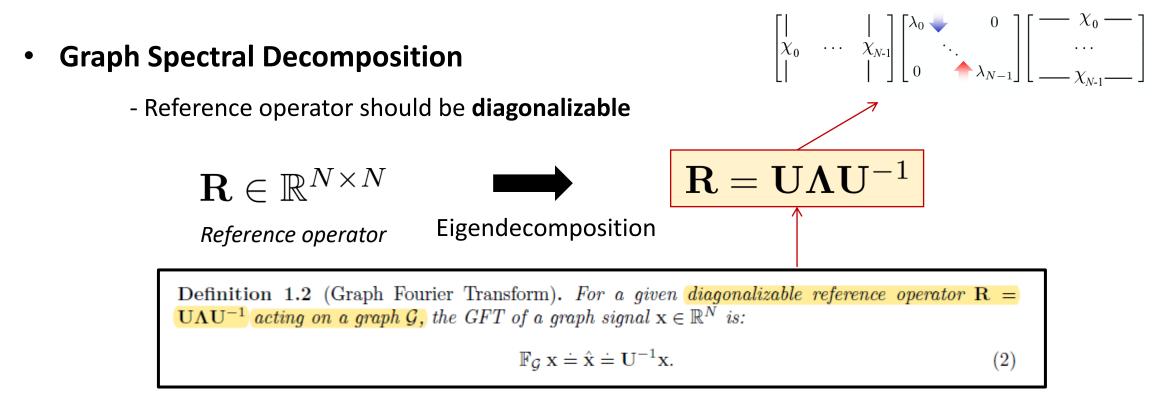
Connected components have different signals

Connected components have same (similar) signals

Reference Operator for GFT

* We only consider real-valued component of eigenvalues now

(10)



• Graph Frequency

Definition 1.3 (Graph frequency). Let R be a reference operator. If its eigenvalues are real, the generalized graph frequency ν of a graph Fourier mode \mathbf{u}_k is:

$$\nu(\mathbf{u}_k) = \lambda_k \ge 0$$

Algebraic representations of Graph

- Adjacency matrix A
- Node Edge Node feature (= signal)
- each entry: edge weight
- if zero: not connected
- Degree matrix $\mathbf{D} = diag(d_i)$
 - Sum of edge weights for each node

1 2 3 3 4 3 3 1 2 1 2 1 1 1 1

https://mathworld.wolfram.com/AdjacencyMatrix.html

(0	0	0	1)		0)	1	0	1)		0	1	1	1)
$ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	0	0	1		1	0	1	0		1			
0	0	0	1					1		1	1	0	1
(1	1	1	0)		1	0	1	0)		(1	1	1	0)

Vertex labeled graph	Degree matrix							
3 4 2 5 1	$\begin{pmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$							

Combinatorial Laplacian matrix

L = D - A

- https://en.wikipedia.org/wiki/Degree_matrix
- Measure difference between own signal and its neighbors
- Widely selected as a reference operator

Graph Signal Processing

Reference Operator in Graph

• Combinatorial Laplacian matrix

$$L = D - A$$

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix				
	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$				

https://en.wikipedia.org/wiki/Laplacian_matrix

Total variation of the whole graph can be measured by

$$\frac{1}{2}\sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{N}_i}(f(j)-f(i))^2 = f^T \mathbf{L} f$$

Other Possible Choices of Reference Operator

Other possible choices of ${f R}$

• Normalized Laplacian

$$\mathbf{L}_n = \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

All eigenvalues lie between 0 and 2

• Adjacency matrix

 \mathbf{A}

Eigenbasis U of A and the eigenbasis of the deformed Laplacian, $L_d = I - \frac{A}{||A||_2}$, are the same

• Random walk Laplacian

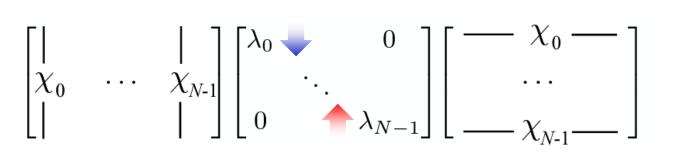
$$\mathbf{L}_{rw} = \mathbf{D}^{-1}\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{A}$$

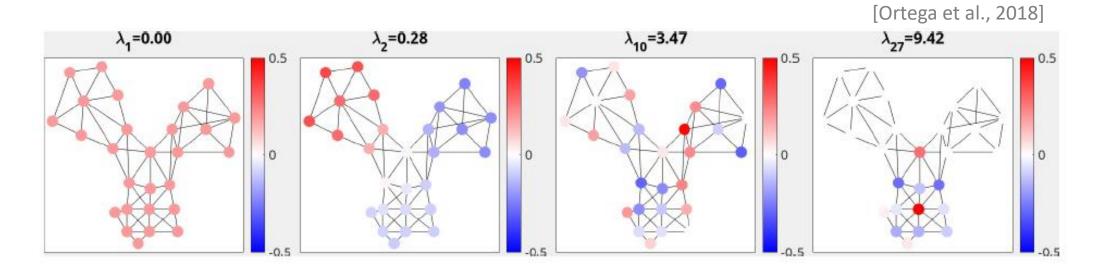
Same eigenvalues with L_n , but the Fourier basis are not orthonomal

• ETC (Consensus operator, geometric Laplacian, deformed Laplacian, ...)

<u>Reference Operator for GFT</u>

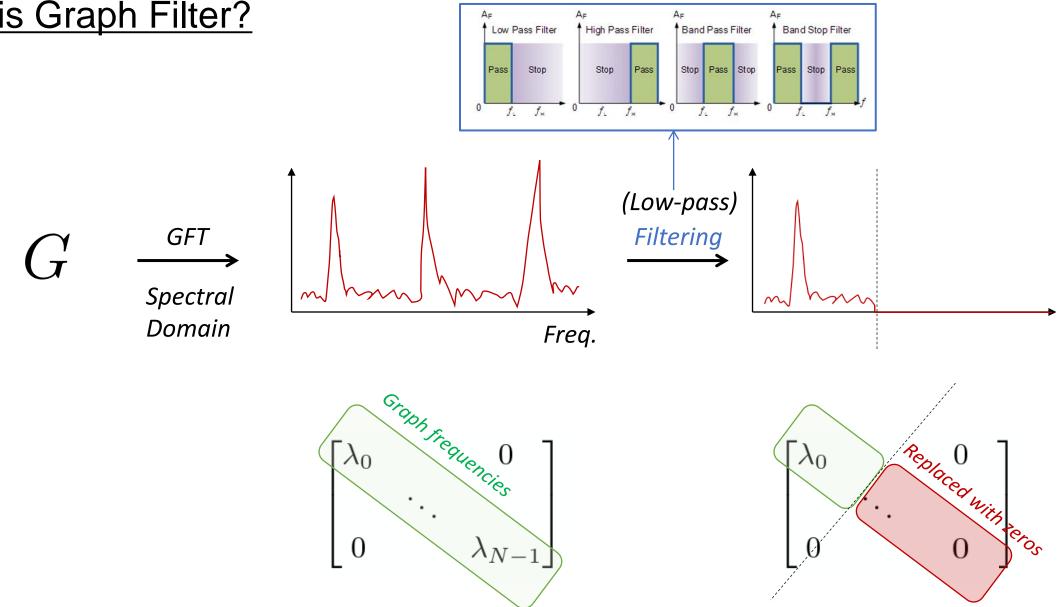
$$\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$





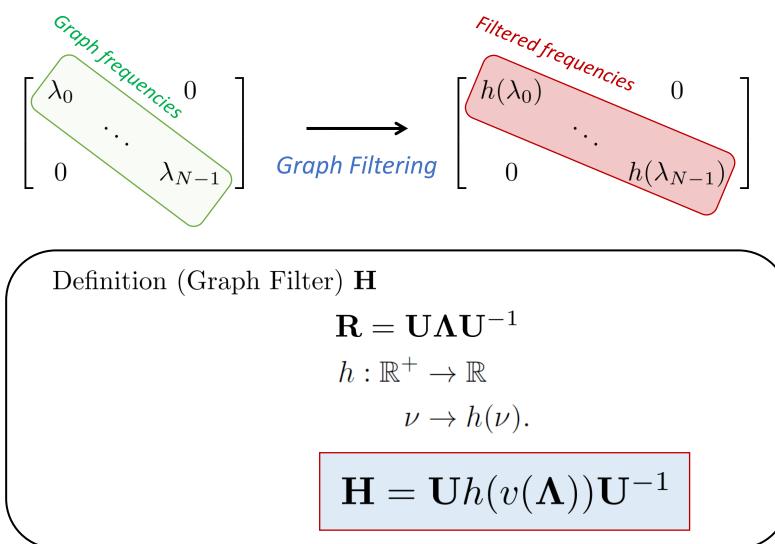
What is Graph Filter?

https://www.electronics-tutorials.ws/filter/filter_2.html



General Definition of Graph Filter

We can generally design any filter with function.



Graph Filtering Examples of Filters

INDEX

• Constant filter

- Ideal low-pass with cut-off frequency
 - Kronecker delta
 - Heat kernel

$$\begin{bmatrix} \lambda_0 & 0 \\ & \ddots & \\ 0 & \lambda_{N-1} \end{bmatrix} \xrightarrow{\mathbf{Graph Filtering}} \begin{bmatrix} c & 0 \\ & \ddots & \\ 0 & c \end{bmatrix}$$

All frequencies are allowed to pass

 $h(\nu) = c$

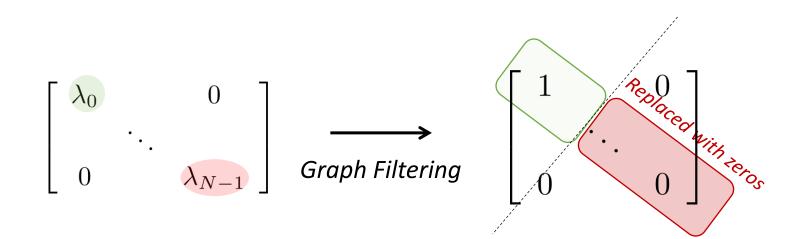
Usecase (response by ChatGPT)

- 1) Graph reconstruction: in case graph signals are incomplete or corrupted (help infer missing signals)
- 2) Graph denoising: Suppress high-frequency and sharpen low-frequency

Examples of Filters

INDEX

- Constant filter
- Ideal low-pass with cut-off frequency
 - Kronecker delta
 - Heat kernel



 $h(\nu) = 1$ if $\nu \leq \nu_c$ and 0 otherwise

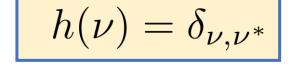
Usecase

- 1) **Recommendation**: Application where low-frequency is important (similar connectivity pattern)
- 2) Graph Denoising
- 3) Graph Convolutional Networks

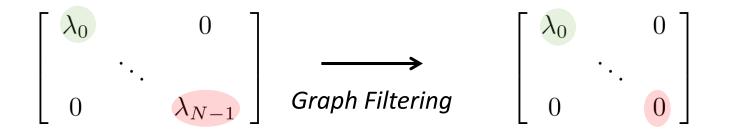
Examples of Filters

INDEX

- Constant filter
- Ideal low-pass with cut-off frequency
 - Kronecker delta
 - Heat kernel



Frequencies with certain conditions (ν^*) are allowed pass



Examples of Filters

 λ_0

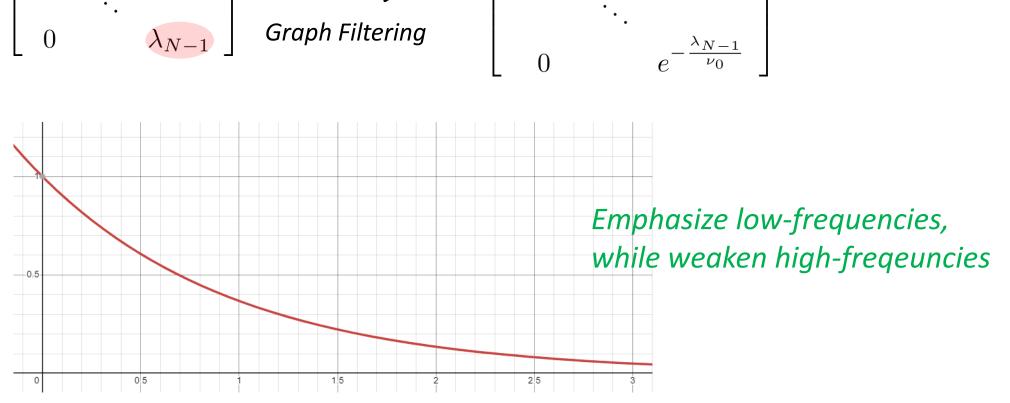
INDEX

$$h(\nu) = e^{-\frac{\nu}{\nu_0}}$$

0

• Constant filter

- Ideal low-pass with cut-off frequency
 - Kronecker delta
 - Heat kernel



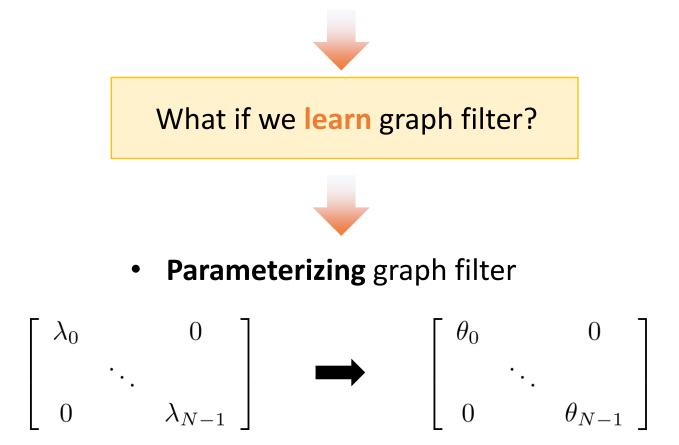
 $e^{-\frac{\lambda_0}{\nu_0}}$

0

Learning Filters by Parameterization

Filter Parameterization

• However, finding optimal filters for a given task is difficult



Learning Filters by Parameterization

Spectral Graph Convolutions

$$h * x = \mathbf{U}h(\mathbf{\Lambda})\mathbf{U}^{-1}x$$

- Eigendecomposition is expansive for large graph
- Mutilpication with $\boldsymbol{U}: O(N^2)$

Approximated by a truncated expansion of *Chebyshev polynomials* up to K-th order (Hammond et al., 2011)

$$h_{\theta} * x = \sum_{k=0}^{K} \theta_k T_k(\hat{L}) x$$

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
$$T_0(x) = 1, T_1(x) = x$$

 \rightarrow Now, it only requires O(|E|)!

GCN: Layer-wise Linear Model

$$h_{\theta} * x = \sum_{k=0}^{K} \theta_k T_k(\hat{L}) x$$

K-localized since it is a K-th order polynomial in the Laplacian

 $\begin{array}{c} 1. \quad \text{Linearize with K=1} \\ 2. \quad \text{Instead, stack multiple layers (deeper model)} \\ h_{\theta} * x = \theta_0 x + \theta_1 (L - I_N) x \\ & \downarrow \quad \text{Integrate two free parameters, for practicallity} \\ h_{\theta} * x = \theta (I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x \end{array}$

* *Renormalization tick*

$$\begin{split} &I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \rightarrow \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \\ &\tilde{A} = A + I_N \end{split}$$

$$Z = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} X \Theta$$

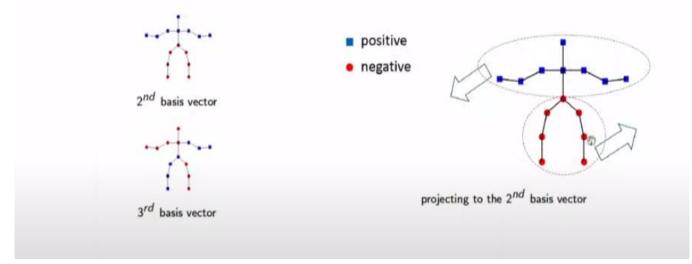
Become efficient operation with O(|E|)

Graph Convolutional Networks

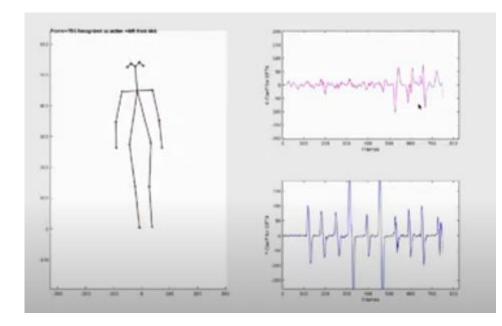
GSP Application example: motion capturing

GSP can be used for motion capturing

Different GFT vectors can capture different motions.



https://www.youtube.com/watch?v=296S-zh3WnU&list=PLeMXQeoNccrjCFyCUUpvAkCcsREa88WFQ: 2017-2018 ECE Distinguished Lecture Series - Antonio Ortega, University of Southern California



GSP Application example: recommendation

GSP can be used for recommendation (CF)

CF: Recommendation based on **similarity of historical interactions.**

GF-CF [Shen et al., 2021]
$$s_u = r_u \left(\tilde{R}^T \tilde{R} + \alpha D_I^{-\frac{1}{2}} \bar{U} \bar{U}^T D_I^{\frac{1}{2}} \right)$$

Low-pass filtered (Top-k eigenvectors)

NOTEBOO

Introduction

<u>Takeaways</u>

• Graph signal processing is a prominent area for processing irregular graph domain

GNNs can be viewed as learning graph filter, by its parameterization

• <u>GSP</u> can be applied in various domains includes recommender system (next topic) "Success is not final, failure is not fatal: it is the courage to continue that counts." - Winston Churchill

Thank you!

jindeok6@yonsei.ac.kr