Graph Neural Network for Heterogeneous Graph

Ph.D candidate in Computational Science and Engineering Yonsei Univ.

Jin-Duk Park

Reading group material

Introduction

What is Heterogeneous Graph (HG)?

Standard (homogeneous) Graph

Heterogeneous Graph

Definition of HG

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

 $\pi : \mathcal{V} \to \mathcal{A} \qquad \psi : \mathcal{E} \to \mathcal{R}$

(node type mapping) (edge type mapping)

$$|\mathcal{A}| + |\mathcal{R}| > 2$$

Introduction

Why HG?

Expressiveness

It can further express rich semantics within different types of nodes and its relations

Introduction

Graph Neural Network (GNN)

GNNs

Active GNN research: High expressiveness in graph

Natural question: How to carry out GNNs in HG?

Representative work (1)

Heterogeneous Graph Attention Network

Xiao Wang, Houye Ji Beijing University of Posts and Telecommunications Beijing, China {xiaowang,jhy1993}@bupt.edu.cn

> Peng Cui, P. Yu Tsinghua University Beijing, China {cuip,psyu}@tsinghua.edu.cn

Chuan Shi*, Bai Wang Beijing University of Posts and Telecommunications Beijing, China {shichuan,wangbai}@bupt.edu.cn

> Yanfang Ye West Virginia University WV, USA yanfang.ye@mail.wvu.edu

-The first attempt of GNN on HG, WWW'19

HAN What is Meta-Path?

Meta-path

- User-defined path

- Different meta-paths reveal different semantics

Movie-Director-Moive

HAN What is Meta-Path?

Meta-path

Formally,

- Adjacency matrix of HG:

ſ	ר	$ \mathcal{R} $	
$\{A$	k	k =	1

- Meta-path via matrix multiplication

$$A_{PAC} = A_{PA}A_{AC}$$

HAN What is Meta-Path?

Meta-path for HG embedding

LAN Components of HAN

Overview of HAN

(a) Node-Level Attention

⁽b) Semantic-Level Attention (c) Prediction

Preliminary

A Short Summary of GAT

GAT overview

Step 1. Masked self-attention Only compute attention coefficients for nodes in the neighbors $j \in \mathcal{N}_i$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

Normalize with softmax

Node Level Attention

1. Mapping to same feature space

$$\mathbf{h}_i' = \mathbf{M}_{\phi_i} \cdot \mathbf{h}_i$$

2. Masked Attention

$$\alpha_{ij}^{\Phi} = softmax_{j}(e_{ij}^{\Phi}) = \frac{\exp\left(\sigma\left(\mathbf{a}_{\Phi}^{T} \cdot [\mathbf{h}_{i}'||\mathbf{h}_{j}']\right)\right)}{\sum_{k \in \mathcal{N}_{i}^{\Phi}} \exp\left(\sigma\left(\mathbf{a}_{\Phi}^{T} \cdot [\mathbf{h}_{i}'||\mathbf{h}_{k}']\right)\right)}$$

Meta-path-based neighbors!
(including self)

Node Level Attention

1. Mapping to same feature space

$$\mathbf{h}_i' = \mathbf{M}_{\phi_i} \cdot \mathbf{h}_i$$

2. Masked Attention

$$\alpha_{ij}^{\Phi} = softmax_{j}(e_{ij}^{\Phi}) = \frac{\exp(\sigma(a_{\Phi}^{T}))}{\sum_{k \in \mathcal{N}_{i}^{\Phi}} \exp(\sigma)}$$
Meta-path-based neighbor
(including self)

We can get (# of the meta-path) representations for each node

Final representation of the node

HAN Semantic Level Attention

HAN Semantic Level Attention

$$(\beta_{\Phi_0}, \beta_{\Phi_1}, \ldots, \beta_{\Phi_P}) = att_{sem}(\mathbf{Z}_{\Phi_0}, \mathbf{Z}_{\Phi_1}, \ldots, \mathbf{Z}_{\Phi_P})$$

HAN Semantic Level Attention

han <u>HAN</u>

Graph Transformer Networks

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang^{*}, Hyunwoo J. Kim^{*} Department of Computer Science and Engineering Korea University {ysj5419, minbyuljeong, raehyun, kangj, hyunwoojkim}@korea.ac.kr

NIPS'2019

Motivation of Graph Transformer Networks (GTN)

Conventional work:

Needs handcrafted meta-path

Not robust, Lack of generality

Motivation of Graph Transformer Networks (GTN)

Conventional work:

Needs handcrafted meta-path

Not robust, Lack of generality In IMDB: MAM, MDM PAP,PSP

> Natural question: How to automatically find the meta-path?

Recall Meta-path

Meta-path

Formally,

- Adjacency matrix of HG:

ſ	1	ן	$ \mathcal{R} $	
$\int \mathcal{L}$	1_k	}	k =	1

- Meta-path via matrix multiplication $A_{PAC} = A_{PA} A_{AC}$

GTN Graph Transformer Layer

GTN Graph Transformer Layer

GTN Graph Transformer Networks

If we stack multiple GT layers..

From convolution weights

$$A_P = \left(\sum_{t_1 \in \mathcal{T}^e} \alpha_{t_1}^{(1)} A_{t_1}\right) \left(\sum_{t_2 \in \mathcal{T}^e} \alpha_{t_2}^{(2)} A_{t_2}\right) \dots \left(\sum_{t_l \in \mathcal{T}^e} \alpha_{t_l}^{(l)} A_{t_l}\right)$$

Arbitrary I-length meta path

I: hyperparameter

Meta path can be learned via optimization.

GTN Graph Transformer Networks

GTN Graph Transformer Networks

Evaluation

Experimental Results

Settings

* all have 3 types of nodes

Dataset	# Nodes	# Edges	# Edge type	# Features	# Training	# Validation	# Test
DBLP	18405	67946	4	334	800	400	2857
ACM	8994	25922	4	1902	600	300	2125
IMDB	12772	37288	4	1256	300	300	2339

Main Results

	DeepWalk	metapath2vec	GCN	GAT	HAN	GTN_{-I}	GTN (proposed)
DBLP	63.18	85.53	87.30	93.71	92.83	93.91	94.18
ACM	67.42	87.61	91.60	92.33	90.96	91.13	92.68
IMDB	32.08	35.21	56.89	58.14	56.77	52.33	60.92

Evaluation

Experimental Results

Dataset	Predefined	Meta-path learnt	by GTNs
	Meta-path	Top 3 (between target nodes)	Top 3 (all)
DBLP	APCPA, APA	APCPA, APAPA, APA	CPCPA, APCPA, CP
ACM	PAP, PSP	PAP, PSP	APAP, APA, SPAP
IMDB	MAM, MDM	MDM, MAM, MDMDM	DM, AM, MDM

Discussion

Discussion

[ref]

			Deep	Walk r	netapath2vec	GCN	GAT	HAN	GTN_{-1}	GTN_{-I} GTN (proposed)				
		DBLP	BLP 63.18		85.53	87.30	93.71	92.83	93.91		94.18			
		ACM	67.	42	87.61	91.60	92.33	90.96	91.13		92.68			
		IMDB	32.	08	35.21	56.89	58.14	56.77	52.33		60.92			
	HAN	[36]		GTN [4	13]		RSHN [45	1		HetGN	JN [44]		MAGN	JN [12]
	1111	[50]		om	19]									
Dataset	AC	CM	DBLP	ACM	IMDB	AIFB	MUTAG	BGS	MC (10%)	MC ((30%)	DBLP	
Metric	Macro-F1	Micro-F1	Macro-F1	Macro-F1	Macro-F1	Accuracy	Accuracy	Accuracy	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
model*	91.89	91.85	94.18	92.68	60.92	97.22	82.35	93.10	97.8	97.9	98.1	98.2	93.13	93.61
GCN*	89.31	89.45	87.30	91.60	56.89	-	-	-	-	-	-	-	88.00	88.51
GAT*	90.55	90.55	93.71	92.33	58.14	91.67	72.06	66.32	96.2	96.3	96.5	96.5	91.05	91.61
model	90.94	90.96	92.95↓	92.28	57.53±2.22↓	97.22	82.35	93.10	97.06	97.11	97.34	97.37	92.81	93.36
GCN	92.25↑	92.29 ↑	91.48↑	92.28	59.11±1.73↑	97.22	79.41	96.55	91.88	92.04	95.37	95.57	88.31	89.37
GAT	92.08↑	92.15	94.18	92.49	58.86 ± 1.73	100 ↑	80.88↑	100↑	98.25 ↑	98.30 †	98.42	98.50 †	94.40↑	94.78 ↑

Mostly, the GNNs on HG is unstable (GAT > HAN) (GAT > GTN)

[ref] Lv, Qingsong, et al. "Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks." *KDD 2021*

Soft adjacency

Mostly, HG-GNN takes large computational cost (e.g, GTN takes more than x1000 computational cost)

Lv, Qingsong, et al. "Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks." *KDD 2021*

"Success is not final, failure is not fatal: it is the courage to continue that counts." - Winston Churchill

Thank you!

jindeok6@yonsei.ac.kr