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SparseMoE
Introduction

 LLMs are truly large

 LLMs require large computing
demands (e.g.,
training/inference time)

¥

Mixture of Experts (MoE) can
be a solution!

* Mixture of Experts (MoE):
- The ensemble concept introduced in [Jacobs et
al., 1991]

- Multiple sub-models (experts) are chosen per
example, with gating mechanism

| size = no. of parameters open-access
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SparseMoE
MoE for Deep Neural Networks

Published as a conference paper al ICLR 2017 I
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Attention is all you need 103727 2017

AVaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, ...
Advances in neural information processing systems 30

Exploring the limits of transfer learming with a unified text-to-text transformer 12268 2020
C Raffel, N Shazeer, A Roberts, K Lee, S Narang, M Matena, ¥ Zhou, W Li, ...
The Journal of Machine Leaming Research 21 (1), 5485-5551

Palm: Scaling language modeling with pathways 2383 2023
A Chowdhery, S Narang, J Devlin, M Bosma, G Mishra, A Roberts, ..
Journal of Machine Learning Research 24 (240), 1-113

Scheduled sampling for sequence prediction with recurrent neural networks 2108 2015
S Bengio, O Vinyals, N Jaitly, N Shazeer

Advances in neural information processing systems 28

SparseMoE

Image transformer 1664 2018
Shazeer, Noam, et al. (Google Brain): "Outrageously large neural networks: The N Parmar, A Vaswanl, J Uszkorell, L Kaiser, N Shazeer, A Ku, D Tran

. . nternational conference on machine leaming, 4055-4064
sparsely-gated mixture-of-experts layer." ICLR 2017
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer 1569 2017
N Shazeer, A Mirhoseini, K Maziarz, A Davis, Q Le, G Hinton, J Dean
arXiv preprint arXiv:1701.068538




SparseMoE
Motivation

* The capacity (# of parameters) of neural networks can give better accuracy

B active inactive

Simple task
with a small model




SparseMoE
Motivation

* The capacity (# of parameters) of neural networks can give better accuracy

 Whole parts are active: quadratic blow-up in computing costs

B active inactive

Simple task
with a small model

Complex task
with a massive model




SparseMoE
Motivation

* Not all parts may be necessary for each data point

(Should be) (Should be)
B active | inactive

If so,
current architecture is
very inefficient




SparseMoE

Motivation
* Mixture of Experts, can be a solution!

* Conditional computation:
Part of the network are active on per-example basis

(Actually) (Actually)

B active [ inactive




SparseMoE
SparseMoE: The Deep Learning Way of MoE

* Sparsely-gated Mixture-of-Experts layer (MoE):
Extension of MoE gatings to deep learning

* Consisting of ~1000 sub-networks,
SparseMoE achieves 1000x improvement in model capacity ,

Weights
Generated By
Gating Network

Expert 3 LB Expert n

>

Rl L], LSTM Models |
MM MoE Models

Expert 1

Gating Network

Test Perplexity

Input

10° 107 108
Computational Budget (ops/timestep) https://deepgram.com/learn/mixture-of-experts-ml-model-guide



SparseMoE
Challenges

e Limitations of dense models are clear
but there are challenges in designing deep learning-based MoE:

C1: Modern computing devices (e.g., GPU) are much faster
at arithmetic than branching

C2: Sparsity levels may be unstable

C3: Larger batch sizes benefit performance in DNN but are reduced by
conditional computation.



SparseMoE
The Sparsely-Gated Mixture-of-Experts Layer (For C1)

C1: Modern computing devices are much
faster at arithmetic than branching

* Trainable gating network: selects a sparse combination of the experts to
process each input CT:]

* G(x): gating network /MoE layer +
E;(x):i-th expert network
mn 2 n:xpertl Expert3 | = = -
y=> G(x)E(x)
%:1 Gatingk
o
Simple arithmetic gating EQ
(solves C1)



SparseMoE

Gating Network (For C2)

C2: Sparsity levels may be unstable

* Softmax gating
v (Naive approach) simple non-sparse gating function

Go(x) = Softmax(x - W)

* Noisy top-K gating

v Only top-K experts are activated
v' Maintain sparsity levels
v The noise term helps with G(x) = Softma.IEffeepTapff(H(I). k))}

prevent case when only
few experts are repeatedly selected H(z); = (z - Wy); +|StandardN ormal() |- Softplus((x - Whyeise)i)

- Maintain sparsity level
(solves C2)

12



SparseMoE
Balancing Expert Utilization (For C2)

 Empirically proven that MoE always produces large weights for the

same few experts.

* Additional soft constraint (loss term)

v" Encourages all experts to have equal importance
v Low variation : Even distribution

Importance(X) = Z G(x)

reX

L-zl-mporta.-n.-crf: (AX) — Wimportance * CV (I nportar ?-(-'63(){))

/ Coefficient of variation
Hyperparameter
o
CV =—
I

P

exp 0 expl exp2 exp3

]
i1l

exp 0 expl exp2 exp3
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SparseMoE

The Shrinking Batch Problem (For C3)

C3: Larger batch sizes benefit performance
but are reduced by conditional computation.

e Shrinking batch problem

v As # experts increases, each experts receives only few batch data

‘ Relieve the problems

(solution 1) Increasing batch size further (* possible memory issue)

(solution 2) Distributed learning technique: Each expert receives a combined
batch consisting of the relevant examples

=) Reduce batch-relevant problem
(solves C3)




SparseMoE
Expert parallelism

 MoE + Distributed learning
e Each expert is loaded on different device

How the model weights are split over cores

Data Model Model and Data EXpEI‘t and Data EXPEI‘T, Model and Data
Parallellsm Parallellsm Parallellsm Parallellsm Parallellsm
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0000 | / ‘HE IS

How the datais split over cores

Data Model Model and Data Expert and Data Expert, Model and Data
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Fedus, William, Barret Zoph, and Noam Shazeer. "Switch transformers: Scaling to trillion parameter models with simple and efficient
sparsity.” Journal of Machine Learning Research 23.120 (2022): 1-39.



SparseMoE
Experiments

* Experiments on recurrent language model (whose task requires big model)

. /MoE layer N
e
A
N G(x),| |G(x),y
MoE MoE
layer layer Expert 1 Expert n
A I
—> > — "
| | Gating
\ Network /
X




SparseMoE

Experiments 1: Efficiency

e Better performs than SOTA baseline LMs
* Achieves better performance with fewer ops (# operations)

T T Baseline Models 55 T, LSTM Models
45 - Flat MoE Models | 50 MM MoE Models
HH Hierarchical MoE Models I |
> > 45}
%40- %407
& o
8 835
[ =
35 30} M\l\'ﬂ
107 10° 10° 10" 10° 107 10°
Model Parameters Excluding Embedding and Softmax Computational Budget (ops/timestep)
Test Test #Parameters ops/timestep Training TFLOPS
Perplexity | Perplexity | excluding embedding Time /GPU
10 epochs | 100 epochs | and softmax layers 10 epochs
Best Published Results 34,7 30.6 151 million 151 million |59 hours, 32 k40s 1.09
Low-Budget MoE Model 34.1 4303 million 8.9 million |15 hours, 16 k40s| 0.74
Medium-Budget MoE Model 31.3 4313 million 33.8 million |17 hours, 32 k40s| 1.22
High-Budget MoE Model 28.0 4371 million 142.7 million | 47 hours, 32 k40s | 1.56
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SparseMoE

Experiments 1: Efficiency

e Better performs than SOTA baseline LMs
* Achieves better performance with fewer ops (# operations)

[T Baseline Models 95} .7, LSTV Models ||
i - Flat MoE Models MM MoE Models
45 HH Hierarchical MoE Models | | S0} 1
> > 45}
$ 40} 8 40|
& &
8 835
= [
i 30}
107 10° 10° 10" .
Model Parameters Excluding Embedding and Softmax Howeve F, req uire Ia rger #
parameters to achieve a good
Test Test #Parameters accuracy
Perplexity | Perplexity |excluding embedg
10 epochs | 100 epochs | and softmax layze sl
Best Published Results 347 30.6 151 million Prillion |59 hours, 32 k40s 1.09
Low-Budget MoE Model 34.1 4303 million 8.9 million | 15 hours, 16 k40s| 0.74
Medium-Budget MoE Model 31.3 4313 million 33.8 million |17 hours, 32 k40s | 1.22
High-Budget MoE Model 28.0 4371 million 142.7 million | 47 hours, 32 k40s | 1.56
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SparseMoE
Experiments 2: Accuracy

* Achieves better results in LM tasks (machine translation)

 Because of larger # params?

GNMT-Mono | GNMT-Multi MoE-Multi | MoE-Multi vs.
GNMT-Multi
Parameters|278M / model 278M 8.7B
ops/timestep 212M 212M 102M
training time, hardware various 21 days, 96 k20s |12 days, 64 k40s
Perplexity (dev) 4.14 3.35 -19%
French — English Test BLEU 36.47 34.40 37.46 +3.06
German — English Test BLEU 31.77 31.17 34.80 +3.63
Japanese — English Test BLEU 23.41 21.62 2591 +4.29
Korean — English Test BLEU 25.42 22.87 28.71 +5.84
Portuguese — English Test BLEU 44.40 42.53 46.13 +3.60
Spanish — English Test BLEU 38.00 36.04 39.39 +3.35
English — French Test BLEU 35.37 34.00 36.59 +2.59
English — German Test BLEU 26.43 23.15 24.53 +1.38
English — Japanese Test BLEU 23.66 21.10 22.78 +1.68
English — Korean Test BLEU 19.75 18.41 16.62 -1.79
English — Portuguese Test BLEU 38.40 37.35 37.90 +0.55
English — Spanish Test BLEU 34.50 34.25 36.21 +1.96
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Extension to Transformer

SwitchTransformer

* FFN layer in transformer is replaced with MoE (1.6T)
* Simpler routing: Top-1 expert + differentiable load balancing loss

y

t
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More

Self-Attention

Fedus, William, Barret Zoph, and Noam Shazeer. "Switch transformers: Scaling to trillion parameter models with simple and efficient

sparsity.” Journal of Machine Learning Research 23.120 (2022): 1-39.

Positional
embeading QP

[LIITT]

Parameters
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Extension to Transformer

SwitchTransformer: The Results

 Multi-lingual training task

e Superior Multi-lingual translation performance than dense model (T5, [Raffel et
al., 2020])
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Extension to Transformer

SwitchTransformer: The Results

* MokEs can replace different modules in transformer
* Replacing all achieves best

v[ITTTT]

Add + Normalize

Feed-Forward Layer ]

’ )
y - -
t ’ [
[ Add + Normalize } IT
{ Feed Forward Layer J f—’[ T
T Self-Attention
[ Add + Normalize ] 8 5 1
f .
Switching Self-Attention “, .
T ~ ' FFN1 || FFN2 | FFN3 || FEN4
~
X . \ )
P D e R
~ p=05
Router

Add + Normalize

L7

Positional 'E
embedding

[T

Moare

Positional
embedding E)

% [TTTTT]

Parameters

Model Precision Quality Quality Speed
@100k Steps (1) @I16H (1) (ex/sec) (1)
Experts FF Hoat32 -1.548 -1.614 1480
Expert Attention Hoat32 -1.524 -1.606 1330
Expert Attention bfloat16 [diverges] [diverges] —
Experts FF + Attention | float32 -1.513 -1.607 1240
Expert FF + Attention | bfloatl6 [diverges] [diverges] -
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Extension to Transformer

GLaM

 GLaM, the MoE-based language models

 |Introduce 1.9B ~ 1.2T MoE models

Model Name Model Type Tparams  Tlact-params
BERT Dense Encoder-only 340M  340M
T3 Dense Encoder-decoder  13B 13B
GPT-3 Dense Decoder-only 175B  175B
Jurassic-1 Dense Decoder-only 178B  178B
Gopher Dense Decoder-only 280B  280B
Megatron-330B Dense Decoder-only 530B  530B
600B

GShard-M4 MoE Encoder-decoder

GLaM (64B/64E) MoE Decoder-only

1.2T

1.5B

96.6B

Table 1. Comparison between GPT-3 and GLaM. In a nutshell,
GLaM outperforms GPT-3 across 21 natural language understand-
ing (NLU} benchmarks and & natural language generative (NLG)
benchmarks in average while using about half the FLOPs per token
during inference and consuming about one third the energy for

training.
GPT-3 GLaM  relative
cost FLOPs / token (G) 350 180 —48.6%
’ Train energy (MWh) 1287 456 -64.6%
. Zero-shot 56.9 627  +10.2%
- One-shot 616 655 +6.3%
£ Few-shot 65.2 681  +4.4%

[ Encoder output

I

|

|

— Add & Norm
I
Feed Forward FFN
— Add & Norm

Multi-Head Attention

— Add & Norm
FFN FFN
— Add & Norm

Multi-Head Attention

[ Input & Positional embeddings ]

|
roses

are

red

violets are

Du, Nan, et al. "GLaM: Efficient scaling of language models with mixture-of-experts.” International Conference on Machine Learning. PMLR,

2022.

blue
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Open MoE Models

Open Source MoEs

There are nowadays several open source projects t¢ train MoEs:

Megablocks: https://github.com/stanford-futuredata/megablocks

Fairseq: https://github.com/facebookresearch/fairseq/tree/main/examples/moe_Ilm

OpenMoE: https://github.com/XueFuzhao/OpenMoE

In the realm of releasedjopen access MoEs,|Jvou can check:

Switch Transformers (Google): Collection of T5-based MoEs going from 8 to 2048 experts. The largest

model has 1.6 trillion parameters.
NLIB MoE (Meta): A MoE variant of the NLLB translation model.
OpenMoE: A community effort that has released Llama-based MoEs.

Mixtral 8x7B (Mistral): A high-quality MoE that outperforms Llama 2 70B and has much faster inference. A

instruct-tuned model is also released. Read more about it in the announcement blog post.

Source: https://huggingface.co/blog/moe 24



Other Research Trends (1)

* Make MoE more efficiently

- Faster [Belcak et al., 2023], [He et al., 2023]

- Lower-memory [Franta et al., 2023]

FAsTERMOE: Modeling and Optimizing Training of
Large-Scale Dynamic Pre-Trained Models

Jiaao He
Tsinghua University
hja20@mails.tsinghua.edu.cn

Haojie Wang
Tsinghua University
wanghacjie@tsinghua.edu.cn

Abstract

Jidong Zhai Tiago Antunes
Tsinghua University Tsinghua University
zhaijidong@tsinghua.edu.cn vazamal0@mails.tsinghua.edu.cn
Fuwen Luo Shangfeng Shi
Tsinghua University Tsinghua University
Ifw19@mails.tsinghua.edu.cn ssf20@mails.tsinghua.edu.cn
Qin Li
Tsinghua University

ligin20@mails.tsinghua.edu.cn

and integrate the above optimizations as a general system,

QMokE: Practical Sub-1-Bit Compression of Trillion-Parameter Models

Elias Frantar' Dan Alistarh 2

Fast Feedforward Networks

Peter Belcak and Roger Wattenhofer

ETH Ziirich
{belcak, wattenhofer } @ethz.ch

Abstract

‘We break the linear link between the layer size and its infer-
ence cost by introducing the fast feedforward' (FFF) archi-
tecture, a log-time alternative to feedforward networks.

‘We demonstrate that FFFs are up to 220x faster than feedfor-
ward networks, up to 6x faster than mixture-of-experts net-
works, and exhibit better training properties than mixtures of
experts thanks to noiseless conditional execution.

Pushing FFFs to the limit, we show that they can use as little
as 1% of layer neurons for inference in vision transformers
while preserving 94.2% of predictive performance.

Introduction

The feedforward layer is a parameter-heavy building block
of transformer models (Vaswani et al. 2017). Growing to
tens of thousands of hidden neurons in recent years, the cost
of feedforward layer inference is now in the sights of those
seeking to make large models faster.

It has been recognized that in very large networks, only
a small portion of the feedforward hidden neurons plays a
role in determining the output for any single input, and that
it is possible to design networks that are modular in order to
utilize this fact (Bengio et al. 2015).

The most recent work on the modularization of feedfor-
ward layers aims at architectural designs that implicitly en-
courage sparsity (Shazeer et al. 2017; Lepikhin et al. 2020;
Fedus, Zoph, and Shazeer 2022). They share the common
approach of subdividing the feedforward layer into separate
blocks of neurons — “experts” — and training a gating layer
to determine the mixture of experts to be used in the forward
pass. Inference acceleration is then achieved by using only
the best-scoring & blocks, or a variant thereof. This approach
scales down the inference time by a constant but remains lin-
ear in the width of the feedforward layer. Moreover, it relies
on noisy gating to allow for load balancing among the ex-
perts, complicating training and encouraging duplicity.

Feedforward Metwork
_ output

/ meights

LR N

imput
medghts

Mixture-of-Experts Network

Aetwark wideh
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Y
L) L L L }Cll"‘rl
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L ! ! )
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Figure 1: A fast feedforward network set in comparison to its
peers. Bottom. Illustrations of the resulting regionalization
of the input space and varying boundary hardness.
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Other Research Trends (2)

* Multi-task learning [Shen et al., 2023], [Chen et al., 2023]

Mod-Squad: Designing Mixtures of Experts As Modular Multi-Task Learners

Zitian Chen', Yikang Shen®, Mingyu Ding?, Zhenfang Chen?,
Hengshuang Zhao®, Erik Learned-Miller', Chuang Gan'~
! University of Massachusetts Amherst, * MIT-IBM Watson Al Lab, * The University of Hong Kong

Mixture-of-Experts Meets Instruction Tuning:
A Winning Combination for Large Language Models

Sheng Shen”™* Le Hou! Yangi Zhou'! NanDu' ShayneLongpre'* Jason Weif,
Hyung Won Chung' Barret Zoph! William Fedus' Xinyun Chent Tu Yui*,
Yuexin Wu'  Wuyang Chen’*  Albert Webson' Yunxuan Li"  Vincent Zhao' Hongkun Yu®

Kurt Keutzer! Trevor Darrelll’ Denny Zhou'

tGo{:gle tUniversiI:y of California, Berkeley T Massachusetts Institute of Technology

1Unive1si|:y of Massachusetts Amherst  "The University of Texas at Austin

Abstract

Optimization in mlti-rask learming (MTL) is more chal-
lenging than single-task {eaming (STL), as the gradient

[fromm different taxks can be contradictory. When tasky are re-

lated, it can be beneficial to share some parameters among
them (cooperation). However, some tasks require addirional
parameters with expertise in a specific vpe of data or dis-
crimination (specialization). Toaddress the MTL challenge,
we propoase Mod-Squad, a new model thar iy Modularized
inte groups of experis (a ‘Squad’). This seruciure allows
st formalize cooperation and specialization as the pro-
cexs of marching experts and wasks, We oprimize this march-
ing process during the iraining of a single model. Specifi-
cally, we incorparaie mixture of experts (MoE) lavers inio
a transformer model, with a new loss that incorporates the
mutial dependence between rasks and experis. Ax a resul,
only a small set of experis are activated for each task. This
prevents the sharing of the entive backbone model between
all tasks, which sirengthens the model, expecially when the
training set size and the number of wasks scale up, Move

interestingly, for each task, we can extract the small set of

experts as a siandalone model thar maimaing the same per-

Jormance as the large model, Extensive experiments on the

Taskenomy daraser with 13 vision tasks and the PASCAL-
Context daraver with 5 visien tasks show the superiority
af eur approach.  The project page can be accessed at
hnp s Avis-www.os, imass, edwmod-sauad.

BEE e Taska Shared Experts

Espart Grow Expart Group

7I. '.. T_, f-. '--. 4-1-. T_-, .-4
Taak Pool Taak Paool
SN ~ T
L ] - [ ]
- - -
Wl Sequad Mall WiT

Figure 1. A comparison beitween Mod-Squad and MoE VIT,
Our key motivation is that experts should leverage commonalities
in some tasks (cooperation) but focus on a subset Of tasks that
require specific features and do not interfere with each other (spe
clalization),

set of tasks, On the one hand, tasks often benelit by shar-
ing parameters, i.e., cooperation. On the other hand, some
tasks may require specialized expertise that only benefits
that single task, ie., specinlization, A good MTL system
should be flexible to optimize experts for the dual purposes
of cooperation and specialization.

There are two well-known challenges in MTL: (1) gradi-
ent conflicts across tasks |5, 38]; and (2) how to design ar-
chitectures that have both high accuracy and computational
efficiency.

26



Takeaway Messages

* Recently, MoE receives huge attention because of the rise of LLMs
* Using MoE, we can get accurate results with better efficiency

e When to use MoE?

Inference/training time Memory (VRAM)

Dense model Slow Small

{ MoE (sparse model) Fast Large
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"Success is not final, failure is not fatal:
it is the courage to continue that counts.”
- Winston Churchill

Contact: jindeok6@yonsei.ac.kr
Web Page: https://jindeok.github.io/jdpark/
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