

Criteria Tell you More than Ratings: Criteria Preference-Aware Light Graph Convolution for Effective Multi-Criteria Recommendation

Jin-Duk Park

Computational Science and Engineering, Yonsei Univ, Seoul, Korea

Siqing Li

School of Computer Science and Engineering, The University of New South Wales, Australia Xin Cao

School of Computer Science and Engineering, The University of New South Wales, Australia Won-Yong Shin

Computational Science and Engineering, Yonsei Univ, Seoul, Korea

> Presenter: Jin-Duk Park

Date: 2023. 08. 09 Room 103C, Recommendation with Graph session

Multi-Criteria Recommender System (MCRS)

What is the Multi-criteria Recommender System (MCRS)?

Tripadvisor.com

Ratings and reviews

4.5 • • • • • • 2,867 reviews

#2 of 91 Restaurants in Sedona

Travelers' Choice 2022

RATINGS

△ Service

Valu

Atmosphere

Agoda.com

Koma Kolaria Color, clarity, head and visual carbonation of this beer. The color, clarity, head and visual carbonation of this beer. The flavors in this beer, thinking about the palate, bitterress and not think beer.

RateBeer.com

REVIEWS - AGO	DA (887) REVIEWS - BOOK	NG.COI	M (231) REVIEWS - OTH	ER (323
74	Accommodation cleanliness	7.3	Amenities	6.6
7.4	location	8.2	Room comfort and comfort	6.0
good () © 887 Reviews	service	7.4	Satisfaction with price	7.5
	 High score for Los Angeles 	(CA)		

Formal Definition of MCRS

Where to go, right now

Spots at the top of travelers' must-go lists

Definition 1: (Top-*K* **MC recommendation)** Given $u \in \mathcal{U}$ and $i \in \mathcal{I}$, and C + 1 user-item ratings $\mathcal{R}_0 \times \mathcal{R}_1 \times ... \times \mathcal{R}_C$ including an overall rating \mathcal{R}_0 , the top-*K* MC recommendation aims to recommend top-K items that user $u \in \mathcal{U}$ is most likely to prefer among his/her non-interacted items in $\mathcal{I} \setminus \mathcal{N}_u$ w.r.t. the *overall* rating by using all C+1 user-item MC ratings.

Recommend top-k relevant unseen items based on **overall** ratings

Motivation 1: GNN-based RS

GNN becomes the state-of-the-art for collaborative filtering,

because of its capacity to capture collaborative signals in high-order connectivity in user-item interactions [He et al., SIGIR 2020]

However, there is **no prior attempt** to solve **MCRS based on GNNs**

Conventional Approaches

Prior work 1: AEMC [Shambour et al., KBS 2021]

- Reconstruct each rating matrix via autoencoders
- Overall prediction is calculated using arithmetic mean

 $r_0 = \frac{r_1 + r_2 \dots + r_c}{c}$

Prior work 2: DMCF [Nassar et al., KBS 2020]

- Two-stage DNN model
- Relation between overall rating and multi-criteria ratings is captured via DNN

Limitations of Prior Work

- **1. High-order connectivity** of useritem interactions is **not explored**
- Information across criteria is implicitly captured

Thus, less effective!

Shambour, Qusai. "A deep learning based algorithm for multi-criteria recommender systems." Knowledge-Based Systems (2021)

Nassar, Nour, Assef Jafar, and Yasser Rahhal. "A novel deep multi-criteria collaborative filtering model for recommendation system." Knowledge-Based Systems (2020)

Motivation 2: Criteria Preference

Criteria preference of users when consuming items

Each user has one's own criteria preference (bias)

Person A tends to consider *cleanliness* of the hotel, while person B tends to see *price* of the hotel.

Challenges in Designing MCRS

Challenge 1. Graph construction

Which graph type should be considered to explore *high*order connectivity patterns in MC ratings?

Hotel A

Overall 4.0 User id: traveler2023

Price

Kindness

Cleanliness

4.0

2.0

5.0

Challenge 2. Criteria preference awareness

How to maximally grasp the *criteria preference of users* through graph convolution?

users

items

l=2 l=3

Methodology

Single-Criterion RS vs MCRS

Motivation of Graph Construction

Complex semantics in the MC ratings

" u_1 and u_2 both like hotel i_1 , while having the same opinion on the cleanliness aspect, but revealing opposite opinions on the price aspect"

Motivation of Graph Construction

Complex semantics in the MC ratings

Option 1: Multi-graph construction

Option 1: Multi-graph construction

Option 2: Separate Graph Construction for Each Criterion

Graph construction

Option 2: Separate Graph Construction for Each Criterion

Root node of the GNN: u_1

Limitations

1) Complex semantics **across** MC ratings cannot be captured

2) Needs a large-size model (w/ many parameters) to deal with multiple graphs

Proposition: Graph Construction in MCRS

MC Expansion Graph

MC expansion graph

Proposition: Graph Construction in MCRS

MC Expansion Graph

Our MC expansion graph let the multi-layer GNN to capture complex semantics in the MC ratings!

Capability of the MC Expansion Graph

Case 1:

Single-Criterion RS vs MCRS

Overview of CPA-LGC

Criteria Preference-Aware Light Graph Convolution (CPA-LGC)

Overview of CPA-LGC

Criteria Preference-Aware Light Graph Convolution (CPA-LGC)

<u>Three</u> key components

<u>**Component 1**</u>: Light graph convolution (LGC) on user/criterion-item embeddings

<u>Component 2</u>: LGC on user-specific criteriapreference (UCP) / item-specific criterion (IC) embeddings

<u>Component 3</u>: Over-smoothing alleviation

LGC on User/Criterion-Item Embeddings

LGC on User/Criterion-Item Embeddings

 Light-weight architecture: Neither feature transformation nor non-linearity

$$\mathbf{e}_{u}^{(l)} = \sum_{i^{c} \in \mathcal{N}_{u}} \frac{w_{u,i^{c}}}{\sqrt{\sum_{i^{c} \in \mathcal{N}_{u}} w_{u,i^{c}}}} \sqrt{\sum_{v \in \mathcal{N}_{i^{c}}} w_{v,i^{c}}}} \dot{\mathbf{e}}_{i^{c}}^{(l-1)}$$
$$\mathbf{e}_{i^{c}}^{(l)} = \sum_{u \in \mathcal{N}_{i^{c}}} \frac{w_{u,i^{c}}}{\sqrt{\sum_{u \in \mathcal{N}_{i^{c}}} w_{u,i^{c}}}} \sqrt{\sum_{j^{r} \in \mathcal{N}_{u}} w_{u,j^{r}}}} \dot{\mathbf{e}}_{u}^{(l-1)}$$

 Weighted propagation: Importance of information from each criterion may differ

LGC on UCP/IC Embeddings

- Newly characterized embeddings
- \checkmark User-specific criteria-preference (UCP) embedding \mathbf{p}_u
- \checkmark Item-specific criteria (IC) embedding \mathbf{p}_{i^c}
 - <u>Initialized specific to the criterion</u> of given criterionitem node

LGC on UCP/IC Embeddings

• Graph convolution

$$\mathbf{p}_{u}^{(l)} = \sum_{i^{c} \in \mathcal{N}_{u}} \frac{w_{u,i^{c}}}{\sqrt{\sum_{i^{c} \in \mathcal{N}_{u}} w_{u,i^{c}}}} \sqrt{\sum_{v \in \mathcal{N}_{i^{c}}} w_{v,i^{c}}}} \dot{\mathbf{p}}_{i^{c}}^{(l-1)}$$
$$\mathbf{p}_{i^{c}}^{(l)} = \sum_{u \in \mathcal{N}_{i^{c}}} \frac{w_{u,i^{c}}}{\sqrt{\sum_{u \in \mathcal{N}_{i^{c}}} w_{u,i^{c}}}} \sqrt{\sum_{j^{r} \in \mathcal{N}_{u}} w_{u,j^{r}}}} \dot{\mathbf{p}}_{u}^{(l-1)},$$

• Stop-gradient on item criterion embedding

26

Preliminary: Over-Smoothing in GNNs

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

- **Stacking many layers** in GNN may suffer over-smoothing, where node representations become similar [Li et al., AAAI 2018]
- Nodes with high-degree is more vulnerable
- Convergence rate of a node is faster for high-degree nodes

Chen et al. "Simple and deep graph convolutional networks." International conference on machine learning. PMLR (2020). Li et al. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI (2018) * Node representation after K-layer GCN

$$\left(\sum_{i=1}^{n} \frac{\sqrt{d_i+1}}{2m+n} x_i \pm \frac{\sum_{i=1}^{n} x_i \left(1 - \frac{\lambda_{\tilde{G}}^2}{2}\right)^K}{\sqrt{d_j+1}}\right)$$

Layer-Wise Over-Smoothing Alleviation

User nodes in the MC expansion graph
 : Largely connected (w/ high-degree) by graph expansion

Potentially, more vulnerable to **over-smoothing**

Layer-Wise Over-Smoothing Alleviation

• Alleviate potential over-smoothing via layer-wise PairNorm [Zhao et al., ICLR 2019]

Zhao et al., "Pairnorm: Tackling oversmoothing in gnns." ICLR (2019).

Prediction

• Layer-wise combination

$$\mathbf{e}_{u}^{*} = \frac{1}{L} \sum_{l=0}^{L} \dot{\mathbf{e}}_{u}^{(l)}; \mathbf{e}_{i^{c}}^{*} = \frac{1}{L} \sum_{l=0}^{L} \dot{\mathbf{e}}_{i^{c}}^{(l)}; \mathbf{p}_{u}^{*} = \frac{1}{L} \sum_{l=0}^{L} \dot{\mathbf{p}}_{u}^{(l)}; \mathbf{p}_{i^{c}}^{*} = \frac{1}{L} \sum_{l=0}^{L} \dot{\mathbf{p}}_{i^{c}}^{(l)},$$

• If a user-item pair has similar representation, it has high score

$$\hat{y}_{u,i^c} = (\dot{\mathbf{e}}_u^* + \dot{\mathbf{p}}_u^*) \cdot (\dot{\mathbf{e}}_{i^c}^* + \dot{\mathbf{p}}_c^*)^\top$$

Optimization

• BPR Loss [Rendle et al., UAI 2009] $-\sum_{u=1}^{|\mathcal{U}|} \sum_{i^c \in \mathcal{N}_u} \sum_{j^r \notin \mathcal{N}_u} \ln \sigma \left(\hat{y}_{u,i^c} - \hat{y}_{u,j^r} \right) + \lambda \|\Theta\|_2^2,$

Evaluation

Dataset description

Datasat	# of	# of	# of	# of	C	1/
Dataset	users	items	overall ratings	MC ratings	C	8
TA	4,265	6,275	34,383	202,859	7	5.9
YM	1,821	1,472	46,176	175,468	4	3.8
RB	4,017	3,422	159,755	607,067	4	3.8
YP	58,971	19,820	445,724	1,408,487	3	3.1

• 5-core settings

user nodes whose # of ratings lower than 5 are dropped

• Edge construction ratings more than median

Performance metric

• Three benchmark metrics for RS: Precision@k, Recall@k, nDCG@k

* Note that the higher the value of each of the three metrics, the better the performance

RQ1. Comparison with MCRS Benchmarks

	Metric	ТА		YM		RB		YP	
Method		K = 5	K = 10	K = 5	K = 10	K = 5	K = 10	K = 5	K = 10
	Precision@K	0.0012	0.0011	0.0675	0.0480	0.0210	0.0273	OOM	OOM
ExtendedSAE	Recall@K	0.0031	0.0092	0.0694	0.1000	0.0144	0.0374	OOM	OOM
	NDCG@K	0.0012	0.0043	0.1072	0.1154	0.0285	0.0435	OOM	OOM
	Precision@K	0.0158	0.0122	0.0160	0.0223	0.0250	0.0288	0.0137	0.0125
UBM	Recall@K	0.0443	0.0533	0.0264	0.0294	0.0174	0.0355	0.0386	0.0713
	NDCG@K	0.0351	0.0346	0.0202	0.0245	0.0301	0.0440	0.0248	0.0341
	Precision@K	0.0167	0.0137	0.0334	0.0242	0.0816	0.0721	0.0090	0.0075
DMCF	Recall@K	0.0174	0.0232	0.0333	0.0470	0.0493	0.0887	0.0102	0.0248
	NDCG@K	0.0115	0.0243	0.0541	0.0614	0.1104	0.1317	0.0304	0.0408
	Precision@K	0.0156	0.0154	0.0358	0.0257	0.0997	0.0807	0.0093	0.0064
AEMC	Recall@K	0.0172	0.0251	0.0398	0.0540	0.0671	0.1090	0.0437	0.0671
	NDCG@K	0.0207	0.0241	0.0595	0.0693	0.1534	0.1780	0.0433	0.0544
	Precision@K	0.0220	0.0170	0.0420	0.0375	0.0739	0.0720	0.0180	0.0165
CFM	Recall@K	0.0615	0.0740	0.0420	0.0613	0.1111	0.1997	0.0482	0.0891
	NDCG@K	0.0487	0.0480	0.0392	0.0583	0.1078	0.1391	0.0349	0.0492
CPA-LGC	Precision@K	0.0449	0.0273	0.1012	0.0788	0.2177	0.1739	0.0360	0.0276
	Recall@K	0.0901	0.1053	0.1211	0.1725	0.1863	0.2745	0.0859	0.1286
	NDCG@K	0.0830	0.0880	0.1392	0.1532	0.2823	0.2892	0.0713	0.0859
	Precision@K	+104.09 %	+60.59 %	+49.93 %	+64.17 %	+136.37 %	+141.20 %	+100.00 %	+67.27 %
Gain	Recall@K	+46.50 %	+42.30 %	+74.50 %	+72.50 %	+67.69 %	+37.46 %	+78.22 %	+44.33 %
	NDCG@K	+70.43 %	+83.33 %	+29.85 %	+32.76 %	+88.96 %	+107.91 %	+64.67 %	+57.90%

- Superior performance (up to 141% in precision) compared MCRS benchmarks
- GNN-based approach shows superior results to DNN or MF-based approaches

RQ2. Comparison with GNN-based Benchmarks

	N	Т	TA		YM		RB		YP	
Method Metric	Metric	K = 5	K = 10							
	Precision@K	0.0060	0.0055	0.0603	0.0508	0.1543	0.1234	0.0208	0.0175	
GC-MC	Recall@K	0.0157	0.0284	0.0745	0.1246	0.1762	0.2547	0.0533	0.0895	
	NDCG@K	0.0112	0.0159	0.0820	0.0978	0.2232	0.2354	0.0409	0.0530	
	Precision@K	0.0015	0.0016	0.0594	0.0472	0.1655	0.1306	0.0086	0.0081	
SpectralCF	Recall@K	0.0054	0.0111	0.0798	0.1202	0.1646	0.2424	0.0190	0.0351	
	NDCG@K	0.0037	0.0058	0.0842	0.0963	0.2255	0.2339	0.0148	0.0204	
	Precision@K	0.0181	0.0119	0.0814	0.0609	0.1730	0.1380	0.0232	0.0188	
NGCF	Recall@K	0.0475	0.0646	0.1010	0.1156	0.1777	0.2648	0.0600	0.0985	
	NDCG@K	0.0393	0.0454	0.1139	0.1277	0.2372	0.2534	0.0471	0.0600	
	Precision@K	0.0265	0.0168	0.0809	0.0618	0.1635	0.1300	0.0223	0.0188	
DGCF	Recall@K	0.0729	0.0911	0.1020	0.1506	0.1596	0.2411	0.0494	0.0827	
	NDCG@K	0.0603	0.0670	0.1150	0.1275	0.2202	0.2296	0.0410	0.0519	
	Precision@K	0.0267	0.0177	0.0771	0.0616	0.1732	0.1382	0.0235	0.0192	
LightGCN	Recall@K	0.0730	0.0929	0.0959	0.1533	0.1778	0.2622	0.0602	0.0987	
	NDCG@K	0.0607	0.0671	0.1108	0.1278	0.2384	0.2512	0.0475	0.0603	
	Precision@K	0.0283	0.0211	0.0795	0.0656	0.1802	0.1423	0.0267	0.0205	
LightGCN _{MC}	Recall@K	0.0799	0.0953	0.0977	0.1566	0.1799	0.2651	0.0633	0.1005	
	NDCG@K	0.0632	0.0699	0.1122	0.1301	0.2423	0.2566	0.0520	0.0625	
CPA-LGC	Precision@K	0.0449	0.0273	0.1012	0.0788	0.2177	0.1739	0.0360	0.0276	
	Recall@K	0.0901	0.1053	0.1211	0.1725	0.1863	0.2745	0.0859	0.1286	
	NDCG@K	0.0830	0.0880	0.1392	0.1532	0.2823	0.2892	0.0713	0.0859	
	Precision@K	+58.66%	+29.38%	+25.09%	+20.12%	+20.81%	+22.21%	+34.83%	+34.63%	
Gain	Recall@K	+12.77%	+10.49%	+18.73%	+10.15%	+3.04%	+1.55%	+35.70%	+28.22%	
	NDCG@K	+31.33%	+25.89%	+21.04%	+17.76%	+16.51%	+12.70%	+37.12%	+37.44%	

- Superior performance (up to 58.66% in precision) compared to GNN benchmarks
 - Large gain is also observed compared to the **naïve GNN implementation using MC ratings** (*LightGCN_{MC}*)

RQ3. Over-Smoothing Alleviation

Distribution of pairwise distance of representations

Dataset: TripAdvisor

(1) Single-criterion graph

(2) MC expansion graphw/o PairNorm

Layer	0	1	2	3	4	5
Baseline graph, LGC w/o $f(.)$	0.092	0.052	0.036	0.028	0.022	0.018
MC expansion graph, LGC w/o f(.)	0.092	0.043	0.031	0.027	0.019	0.014
MC expansion graph, LGC w/ $f(.)$	2.061	1.414	2.546	1.447	2.420	1.369
	LayerBaseline graph,LGC w/o $f(.)$ MC expansion graph,LGC w/o $f(.)$ MC expansion graph,LGC w/ $f(.)$	Layer0Baseline graph, LGC w/o $f(.)$ 0.092 MC expansion graph, LGC w/o $f(.)$ 0.092 MC expansion graph, LGC w/ $f(.)$ 2.061	Layer 0 1 Baseline graph, 0.092 0.052 LGC w/o $f(.)$ 0.092 0.043 MC expansion graph, 0.092 0.043 MC expansion graph, 2.061 1.414 LGC w/ $f(.)$ 2.061 1.414	Layer 0 1 2 Baseline graph, 0.092 0.052 0.036 LGC w/o $f(.)$ 0.092 0.043 0.031 MC expansion graph, 0.092 0.043 0.031 MC expansion graph, 2.061 1.414 2.546	Layer 0 1 2 3 Baseline graph, LGC w/o $f(.)$ 0.092 0.052 0.036 0.028 MC expansion graph, LGC w/o $f(.)$ 0.092 0.043 0.031 0.027 MC expansion graph, LGC w/ $f(.)$ 2.061 1.414 2.546 1.447	Layer01234Baseline graph, LGC w/o $f(.)$ 0.0920.0520.0360.0280.022MC expansion graph, LGC w/o $f(.)$ 0.0920.0430.0310.0270.019MC expansion graph, LGC w/ $f(.)$ 2.0611.4142.5461.4472.420

(3) MC expansion graphw/ PairNorm

- Over-smoothing is intensified in the MC expansion graph
- It is relieved by the layer-wise PairNorm

- CPA-LGC-MC: model w/o MC expansion graph (graph construction with overall ratings)
- CPA-LGC-c: model w/o user criteria preference / criterion embeddings (w/o <u>component 2</u>)
- CPA-LGC-f: model w/o layer-wise PairNorm (w/o <u>component 3</u>)
 * for YP, PairNorm is not useful since it's γ value is the least.

RQ5. Scalability of CPA-LGC

THEOREM 3.1. The computational complexity of CPA-LGC is at most linear in $|\mathcal{E}|$.

• Our CPA-LGC can be easily implemented with simple matrix multiplications

PairNorm $\dot{\mathbf{E}}^{(l)} = f\left(\tilde{\mathbf{A}}\mathbf{E}^{(l-1)}\right)$ $\dot{\mathbf{P}}^{(l)} = f\left(\tilde{\mathbf{A}}\mathbf{P}^{(l-1)}\right)$ Normalized adj

- Computational complexity of CPA-LGC is linear in the number of edges in the given graph
- The empirical evaluation also supports our theoretical claim.

Takeaways

Takeaways

 We devise a novel graph construction method in MCRS, called MC expansion graph, to capture complex semantics in MC ratings via multilayer graph convolution

 CPA-LGC is light and effective GNN, which can prevent possible oversmoothing problem in the MC expansion graph along with explicitly capturing criteria preference of users

Thank you for your attention!

Contact: jindeok6@yonsei.ac.kr

Website QR

Appendix: Types of Feedbacks in RS

Explicit feedback:

- Explicit input by users regarding their interest in products.

e.g.) user ratings (1~5 scores), preference (thumbs-up/down button)

Implicit feedback

- Indirectly reflect opinion through observing user behavior

e.g.) purchase history, browsing history, search patterns, or even mouse movement.

Appendix: LightGCN

✓ One of the powerful and efficient GNN-based RS

 ✓ Removing non-linearity and feature transformation

$$\mathbf{e}_{u}^{(k+1)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{(k)},$$
$$\mathbf{e}_{i}^{(k+1)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}|}\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{(k)}.$$