< BRL MEGA project >

A Literature Survey on Physics-informed GNNs

MIDaS Lab

Presenter: Jin-Duk Park Supervisor: Won-Yong Shin

MLP is Universal Approximator

Theorem 2.4

[Hornik et al., 1989]

For every squashing function Ψ , every r, and every probability measure μ on (R^r, B^r) , $\Sigma^r(\Psi)$ is uniformly dense on compacta in C^r and ρ_{μ} -dense in M^r .

In other words, standard feedforward networks with only a single hidden layer can approximate any continuous function uniformly on any compact set and any measurable function arbitrarily well in the ρ_{μ} metric, regardless of the squashing function Ψ (continuous or not), regardless of the dimension of the input space r, and regardless of the input space

Rule-based Algorithm

Empirical Risk Minimization (ERM) Perspective

Wang, Yaqing, et al. "Generalizing from a few examples: A survey on few-shot learning." ACM computing surveys (csur) 53.3 (2020): 1-34.

Empirical Risk Minimization (ERM) Perspective

Short Recap: Graph Neural Network

Shi, Weijing, and Raj Rajkumar. "Point-gnn: Graph neural network for 3d object detection in a point cloud." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

Physics-Informed GNNs

Further improve model inductive bias or data utilizing

expensive, parameter tuning for each system

1. Equivariant Graph Neural Network

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph neural networks." International conference on machine learning. PMLR, 2021.

2. MeshGraphNets

Pfaff, Tobias, et al. "Learning mesh-based simulation with graph networks." ICLR 2021

1. Equivariant Graph Neural Network

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph neural networks." International conference on machine learning. PMLR, 2021.

2. MeshGraphNets

Pfaff, Tobias, et al. "Learning mesh-based simulation with graph networks." ICLR 2021

Physics in Real-worlds and Equivariance of Models

Physics in Real-worlds and Equivariance of Models

Types of Equivariance

- 3 Types of equivariance in particles
- $\phi(\cdot)$: equivariant model
 - 1. Translation equivariance

 $y + g = \phi(x + g)$

- 2. Rotation equivariance
 - Q: orthogonal matrix $Qy = \phi(Qx)$
- 3. Permutation equivariance
 - $P: \text{ permutation matrix} \\ Py = \phi(Px)$

EGNN: Equivariant Graph Neural Network

$$\begin{split} \mathbf{m}_{ij} &= \phi_e \left(\mathbf{h}_i^l, \mathbf{h}_j^l, \left\| \mathbf{x}_i^l - \mathbf{x}_j^l \right\|^2, a_{ij} \right) \\ \mathbf{x}_i^{l+1} &= \mathbf{x}_i^l + C \sum_{j \neq i} \left(\mathbf{x}_i^l - \mathbf{x}_j^l \right) \phi_x \left(\mathbf{m}_{ij} \right) \\ \mathbf{m}_i &= \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} \\ \mathbf{h}_i^{l+1} &= \phi_h \left(\mathbf{h}_i^l, \mathbf{m}_i \right) \end{split}$$

EGNN: Equivariant Graph Neural Network

"Model aware *relative* distance between two coordinates"

> 2. Update representation $\mathbf{h}_{u}^{(k)} = \phi(\mathbf{h}_{u}^{(k-1)}, \mathbf{m}_{u}^{(k)})$

> > u

 $h^{(l+1)}$

 $\mathbf{h}^{(l)}$

EGNN: Equivariant Graph Neural Network

Concluding we showed that an E(n) transformation on the input set of points results in the same transformation on the output set of points such that $\mathbf{h}^{l+1}, Q\mathbf{x}^{l+1} + g, Q\mathbf{v}^{l+1} = EGCL[\mathbf{h}^l, Q\mathbf{x}^l + g, Q\mathbf{v}^{init}, \mathcal{E}]$ is satisfied.

<u>Results</u>

Task Units	α bohr ³	$\Delta \varepsilon$ meV	ε _{HOMO} meV	ε _{LUMO} meV	μ D	C_{ν} cal/mol K	G meV	H meV	R^2 bohr ³	U meV	U_0 meV	ZPVE meV
NMP	092	69	43	38	030	040	19	17	180	20	20	1 50
Schnet	.235	63	41	34	.033	.033	14	14	.073	19	14	1.70
Cormorant	.085	61	34	38	.038	.026	20	21	.961	21	22	2.03
L1Net	.088	68	46	35	.043	.031	14	14	.354	14	13	1.56
LieConv	.084	49	30	25	.032	.038	22	24	.800	19	19	2.28
DimeNet++*	.044	33	25	20	.030	.023	8	7	.331	6	6	1.21
TFN	.223	58	40	38	.064	.101	-	-	-	-	-	-
SE(3)-Tr.	.142	53	35	33	.051	.054	-	-	-	-	-	-
EGNN	.071	48	29	25	.029	.031	12	12	.106	12	11	1.55

Table 3. Mean Absolute Error for the molecular property prediction benchmark in QM9 dataset. *DimeNet++ uses slightly different train/val/test partitions than the other papers listed here.

1. Equivariant Graph Neural Network

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph neural networks." International conference on machine learning. PMLR, 2021.

2. MeshGraphNets

Pfaff, Tobias, et al. "Learning mesh-based simulation with graph networks." ICLR 2021

MeshGraphNets: Overview

Watch <u><video></u>

Graph Construction

Encoder: Graph Construction

- Encoder encodes the current mesh M^t into a mutigraph $G = (V, E^M, E^W)$
- Two-types of edges (meshs) are constructed
 1. regular edges
 2. world space edges

Graph Construction

Encoder: Graph Construction

Given

- *u_i*: mesh coordinate vector, for node i
- x_i : world-space coordinate vector , for node i
- 1. Graph structure encoding

Regular edges

World-space edges

- Euclidean (spatial) proximity
- Add edges: $|x_i x_j| < r_W$
- External dynamics that are nonlocal in mesh space, can be captured

world space x

2. Edge feature encoding

- $oldsymbol{u}_i oldsymbol{u}_j$, $|oldsymbol{u}_i|$: displacement vector and its norm
- $x_i x_j$, $|x_i|$: displacement vector and its norm

GNN in MeshGraphNets

Processer: GNNs

• L-identical message passing blocks are used

• Mesh edge update

 $\mathbf{e'}_{ij}^{M} \leftarrow f^{M}(\mathbf{e}_{ij}^{M}, \mathbf{v}_{i}, \mathbf{v}_{j})$

* f(.): MLP

• World edge update

 $\mathbf{e'}_{ij}^{W} \leftarrow f^{W}(\mathbf{e}_{ij}^{W}, \mathbf{v}_{i}, \mathbf{v}_{j})$

Node embedding update

$$\mathbf{v'}_i \leftarrow f^V(\mathbf{v}_i, \sum_j \mathbf{e'}_{ij}^M, \sum_j \mathbf{e'}_{ij}^W)$$

Next Step Prediction

Decoder: predict next step

- MLP is used to decode next step output
- Interpret output features p_i as derivatives of q_i
 - First order system

$$\mathbf{q}_i^{t+1} = \mathbf{p}_i + \mathbf{q}_i^t$$

- Second order system

$$\mathbf{q}_i^{t+1} = \mathbf{p}_i + 2\mathbf{q}_i^t - \mathbf{q}^{t-1}$$

Simulation Results

The Results

https://sites.google.com/view/meshgraphnets

< BRL MEGA project > Thank you for your attention!

jindeok6@yonsei.ac.kr