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Introduction

MLP is Universal Approximator

Theorem 2.4 [Hornik et al., 1989]

For every squashing function ¥, every r, and every
probability measure g on (R",B’), 2’(¥) is uniformly
dense on compacta in C" and p,-dense in M". [

In other words, standard feedforward networks
with only a single hidden layer can approximate any
continuous function uniformly on any compact set
and any measurable function arbitrarily well in the
p, metric, regardless of the squashing function ¥
(continuous or not), regardiess of the dimension of
the input space r, and regardless of the input space

Rule-based Algorithm
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*

Function is approximated (found)
by optimization

*

Choosing fy as MLP have capability of
approximating any functions!

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators.” Neural networks 2.5 (1989): 359-366.



Introduction

Empirical Risk Minimization (ERM) Perspective

optimal: ;1
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sest in H: h [Wang et al., 2020]
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Good model
(w/ proper inductive bias)
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Wang, Yaqging, et al. "Generalizing from a few examples: A survey on few-shot learning." ACM computing surveys (csur) 53.3 (2020): 1-34.



Introduction

Empirical Risk Minimization (ERM) Persbective

h

prior
knowledge

H start

(a) Data. (b) Model. (c) Algorithm.

Wang, Yaqging, et al. "Generalizing from a few examples: A survey on few-shot learning." ACM computing surveys (csur) 53.3 (2020): 1-34.



Introduction

Short Recap: Graph Neural Network

-

Graph neural network (GNN) is a
“‘good model” for graph data

§ et al., 2020]

Given network 1. Message passing & aggregation 2. Update representation
A (graph structure) B) _ q(dh* Y .5 c N hgc) _ hgf—l) m&k)
X (node features) HHu 9({h, ! (w)}) i ’ )
[T ] [T 1]
' [T 1] [T 1]
[T 1]
[T 17 -

[TT1 [T Aggregated message :\_@ _ ;;!J% [1 19
(Summing up, taking average, max-pooling, ...) h(") h(H‘l)

Shi, Weijing, and Raj Rajkumar. "Point-gnn: Graph neural network for 3d object detection in a point cloud." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.



Introduction

Physics-Informed GNNs

Graph

Further improve model inductive bias or data utilizing
(prior) physical information.

o
]]]]]]]

GNN

Physical
information

H

(a) Data. (b) Model.

+ High-dimensional scientific simulations:
expensive, parameter tuning for each system



1. Equivariant Graph Neural Network

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph
neural networks." International conference on machine learning. PMLR, 2021.

2. MeshGraphNets

Pfaff, Tobias, et al. "Learning mesh-based simulation with graph networks." ICLR 2021
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Physics in Real-worlds and Equivariance of Models

Symmetry in physics
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Physics in Real-worlds and Equivariance of Models

Symmetry in physics

’ Let a model aware physical patterns
FAt 3 PN

1 itAT Rt ’A model with good inductive bias

’Equ/var/}anl neural network

* What is Equivariance?

Let7, : X — X be a set of transformations on X for the
abstract group g € . We say a function ¢ : X — Y is
equivariant to g if there exists an equivalent transformation
on its output space S, : ¥ — Y such that:

o1y (x)) = .Srg((j)(x)] (1)




Types of Equivariance

3 Types of equivariance in particles

o(-): equivariant model

1. Translation equivariance
y+tg=d(x+yg)

2. Rotation equivariance

(): orthogonal matrix
Qy = ¢(Qx)

3. Permutation equivariance

P: permutation matrix

Py = ¢(Px)




EGNN: Equivariant Graph Neural Network

m;; = ¢ (h"E hI ||x — Xj,” “1;)

[+1 “f )
j#i

m; — E mu

h§+1 = r__.-’;:'h (hz Il’l.j_)



EGNN: Equivariant Graph Neural Network

Novel proposition

__ I Wl z []|2 ‘ -
m;; = Q¢ (ll-j_- hj' ||Xi — Xj| -”ij) “Model aware relative distance
between two coordinates”
xtl=xt +C (XE—XI)O (m; ;)
i T i j )| e g,
(B
Inm,; = E mu
FJEN (i) Conventional GNNs
hit! = ¢, (h!, m,) 1. Message passing & aggregation 2. Update representation
. = ¢ -, 1, _
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EGNN: Equivariant Graph Neural Network

Novel proposition

m;; = (_I:JE hi hf}

Derivation.
- I I I e ‘x" T ".))' :"l" Py hs vl-lm L " ) X{ x‘II ':"1 :"ll.l
Full proof included in the arXiv version; | ¢ ¥ ") m) = Qe vt > (om0
https://arxiv.org/abs/2102.09844 0 (60 () v 4T (=) butme)) (1)
Qvi*! “ (12)

B.1. Equivariance proof for velocity type inputs

In this subsection we prove that the \douly types input formulation of our model is also E(n) equivariant on x. More

formally, for any translation ve model should satisfy:

In Appendix A we already proved the equivariance of our EGNN (Section 3) when not including vector type inputs. In its
velocity type inputs variant we only replaced its coordinate updates (eq. 4) by Equation 7 that includes velocity. Since this is
the only modification we will only prove that Equation 7 re-written below is equivariant.

vl. - (h! mu +C Z(x —x m (n\,,)

J#Fi

First, we prove the first line preserves equivariance, that is we want to show:

(,‘)V{‘ 1 oy (hf) (‘)V:m( + Z (Qxf +y [(\)xf’ - _q}'] by (nl.))

Iumlly it is \lr.ughllnmurd to show the second equation is also equivariant, that is we want to show ()x
()xI g+ ()v

Derivation.
Qx4+ g+ Qvit = Q(x! +vit) + g
Qx{" g

Concluding we showed that an I£(n) transformation on the input set of points results in the same transformation on the
output set of points such that k"1, Qx'*! 4 g, Qv'*! = EGCL[K!, Qx' + g, Qv'™, ] is satisfied.




Results

Task Y Ae EHOMO ELUMO L be G H R 2 U U{] 7ZPVE
Units bohr® meV meV meV D cal/mol K meV meV bohr® meV meV meV
NMP .092 69 43 38 030 040 19 17 180 20 20 .50
Schnet 235 63 41 34 033 033 14 14 073 19 14 .70
Cormorant 085 61 34 38 038 026 20 21 961 21 22 2.03
L1Net 088 68 46 35 043 031 14 14 354 14 13 [.56
LieConv 084 49 30 25 032 038 22 24 800 19 19 2.28
DimeNet++*  .044 33 25 20 030 023 8 7 331 6 6 .21
TEN 223 38 40 38 064 101 - - - - - -
SE(3)-Tr. 142 33 35 33 051 054 - - - - - -
EGNN 071 48 29 25 .029 031 [2 12 106 12 11 .55

Table 3. Mean Absolute Error for the molecular property prediction benchmark in QM9 dataset. *DimeNet++ uses slightly different
train/val/test partitions than the other papers listed here.
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MeshGraphNets: Overview

Learned one-step simulator

q;

»( Update

t+1
q;

P

L ]

Watch <video>

lterative
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Cloth mesh nodes Vv
Obstacle mesh nodes
Mesh-space edges EM
World-space edges EW

M
Mesh-space messages Eri i

W
r
World-space messages ¢ ij

Decoded accelerations  Pi


https://sites.google.com/view/meshgraphnets#h.gz8e5qw1m6e4

Graph Construction

Encoder: Graph Construction Leamed one-step simulator feranve
a; at!
) (IR 0 4 .
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current mesh M into a N e
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« Two-types of edges (meshs) are €A AR ™ —— Meshspaceedges £
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* What is multi-graph?

Nodes are connected with
multiple types of relations (edges)




Graph Construction

Encoder: Graph Construction

Given

* u;: mesh coordinate vector, for node |
 x;: world-space coordinate vector, for node |

1. Graph structure encoding

Regular edges World-space edges

« Euclidean (spatial) proximity

- Add edges: |x; — x;| <7y

 External dynamics that are non-
local in mesh space, can be
captured

N\ KA
K

mesh space u

world space x

2. Edge feature encoding

* u; —u; |yl displacement vector and its norm
*  X; — Xxj,|x;|: displacement vector and its norm



GNN in MeshGraphNets

Processer: GNNs

 L-identical message
passing blocks are used

« Mesh edge update

,u

— (el vi, vj)
« World edge update

: W
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* Node embedding update

Vri — fv(vuz ';u Z '}
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Next Step Prediction

Decoder: predict next step

e MLP is used to decode next
step output

* Interpret output features p;
as derivatives of q;

- First order system

1
ot =pi+q

- Second order system

t+1 t—1

q; =pi+2q;—q
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Simulation Results

The Results

(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil

actuator
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https://sites.google.com/view/meshgraphnets
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Thank you for your attention!

jindeoké@yonsei.ac.kr
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