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Introduction
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There are too many options to choice for designing neural network.

Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation."

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks."

Simonyan et al. "Very deep convolutional networks for large-scale image recognition."

Alexnet

VGG 16

U-Net



Motivation
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Specific problem 
at hand

Which activation to use?
How many layers?

How to initialize weights?
...

Many researcher usually do the puzzle game on those options.



Motivation
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The Neural Networks
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Better understanding its internal working :
helpful to design neural network architectures

However, 
those components are not mutually independent and they actucally affect each other. 
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1. Xavier (Glorat) initialization

Two milestone initialization techniques

2. Kaiming (He) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 

networks." JMLR Workshop and Conference Proceedings, 2010.

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet 

classification." ICCV, 2015.
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Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 

networks." JMLR Workshop and Conference Proceedings, 2010.
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Logical flow of the research
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Empirical
observation

Problem
discovery

Design method
to tackle

the problem

the behavior of backpropagation
on various activation functions

Saturation problem
over deeper layers

Proposing
new initialization technique



Basic Experimental Settings
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Dataset

Shapeset-3x2 dataset
with small resolution ~ 64 x 64, gray-scale

The Neural Networks
1
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1) 4 hidden layer with n=1000 (same) neurons per each layer
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2) Different activations depending on the experiment

3) Weight initialization (standardly used heuristic)

(What conventionally used at that time)



Basic Terms and Notations
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Layer 1 Layer 2 Layer 3 Layer 4

Softmax

• ‘Layer i’ : the output of the i-th hidden layer
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• 𝑓(. ): activation function

• 𝒔𝒊 = 𝒛𝒊𝑾𝒊 + 𝒃𝒊

• 𝒛𝑖+1 = 𝑓(𝒔𝑖)

• 𝒛𝒊 : activation vector at layer i



Supervised learning with Activations: 1) sigmoid
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• None-zero mean

• Not symmetric

• ~0 gradient near y=0, 1

Experiment 1) All layer activations → set to sigmoid

sigmoid
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Figure: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid)

Supervised learning with Activations: 1) sigmoid

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

Empirical
observation

Problem
discovery

Design method
to tackle

the problem
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Figure: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid)

Supervised learning with Activations: 1) sigmoid

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

Observation: Excessive saturation
All the sigmoid activation at layer 4 :  saturated to 0, until ~100 epochs
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Supervised learning with Activations: 1) sigmoid

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

A Hypothesis:
“ the transformation that the lower layers

of the randomly initialized network computes initially is
not useful to the classification task”

Output layer: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒛(4) + 𝒃)

The output layer is correlated mostly with dominant variations of x, not predictive of y 

Rely mostly on 𝒃 (learned very quickly) rather than 𝑾𝒛(4)

Initially (𝑾~𝑼(−
𝟏

𝒏
,
𝟏

𝒏
)),

The network pushes 𝑾𝒛(4) towards 0,

which can be achieved by pushing 𝒛(𝟒) towards 0
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Supervised learning with Activations: 1) sigmoid

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

pushing 𝒛(𝟒) towards 0

This is not a good thing for sigmoid function, 
which is not symmetric.

Since the meaningful gradient cannot flow with this condition.

Excessive saturation problem

At the initial stage of training
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Supervised learning with Activations: 1) sigmoid

Effat et al, " Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. “

pushing 𝒛(𝟒) towards 0

But this is good thing symmetric functions !
(e.g., hyperbolic tangent, softsign)
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Supervised learning with Activations: 1) sigmoid

Effat et al, " Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. “

pushing 𝒛(𝟒) towards 0

But this is good thing symmetric functions !
(e.g., hyperbolic tangent, softsign)
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Supervised learning with Activations: 2) tanh / softsign (symmetric)

Markers alone: activation value
With solid line: standard deviation

(Top: tanh // Down: softsign)

Observation1 :
The saturation behavior is gone !!

Observation2 :
Variation is getting smaller as go to deeper layers

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

Using symmetric activation networks ..

* 5 layers are used in the experiments
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Supervised learning with Activations: 2) tanh / softsign (symmetric)

Markers alone: activation value
With solid line: standard deviation

(Top: tanh // Down: softsign)

Observation1 :
The saturation behavior is gone !!

Observation2 :
Variation is getting smaller as go to deeper layers

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).

Using symmetric activation networks ..

* 5 layers are used in the experiments

- Symmetric activation : solve excessive saturation
- But another problem is observed 
(variation is getting smaller) : Let’s solve it with weight initialization !
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Studying Gradients and their Propagation
Some settings:

• Symmetric activation with unit derivative (𝑓′ 0 = 1)

• Considering initial stage : linear regime

• 𝒔𝒊 = 𝒛𝒊𝑾𝒊 + 𝒃𝒊

• 𝒛𝑖+1 = 𝑓(𝒔𝑖)

• 𝑖 :layer index 
𝑑: depth of the network
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𝒔𝒊 = 𝒛𝒊𝑾𝒊 + 𝒃𝒊

→ 𝒛𝑖+1 = 𝑓(𝒔𝑖)

Layer i+1 Layer d…
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Studying Gradients and their Propagation
Some settings:

• Symmetric activation with unit derivative (𝑓′ 0 = 1)
• Considering initial stage : linear regime

• 𝒔𝒊 = 𝒛𝒊𝑾𝒊 + 𝒃𝒊

• 𝒛𝑖+1 = 𝑓(𝒔𝑖)

• 𝑖 :layer index 
𝑑: depth of the network

𝑉𝑎𝑟(𝑧𝑗
𝑙) = 𝑉𝑎𝑟(෍

𝑗=1

𝑛𝑙

𝑊𝑗𝑘
𝑙 𝑧𝑘

𝑙−1)

in a linear regime at the initial stage
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Studying Gradients and their Propagation
Some settings:

• Symmetric activation with unit derivative (𝑓′ 0 = 1)
• Considering initial stage : linear regime

• 𝒔𝒊 = 𝒛𝒊𝑾𝒊 + 𝒃𝒊

• 𝒛𝑖+1 = 𝑓(𝒔𝑖)

(1)

(2)

• 𝑖 :layer index 
𝑑: depth of the network

Expand 
with

chain rule 

Variance of the gradient on the weights

Variance of the back-propagated gradient

Remember these
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Studying Gradients and their Propagation

Now let’s consider the case when all layers have same width 𝒏, 
and weight variance is shared. then (1), (2) become:

(1)

(2)
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Studying Gradients and their Propagation

Interesting properties:
with symmetric activations,

1) Variance of the gradient on the weights is the same for all layers
2) Variance of the back propagated gradient still vanish or explode as for different layers.
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Studying Gradients and their Propagation

REMIND : Our aim (what we would like to be):

• From a forward-propagation view, to keep information flowing,

• From a back-propagation view, to keep information flowing

The both conditions transform to
A compromise between these

The objective



Studying Gradients and their Propagation
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https://en.wikipedia.org/wiki/Variance



Studying Gradients and their Propagation

𝑊 ~𝑈(−
1

𝑛
,
1

𝑛
)
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The conventional initialization

The normalized (Xavier/glorot) initialization

The objective

Match !

? ?



Studying Gradients and their Propagation
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The conventional initialization

The normalized (Xavier/glorot) initialization

The objective

Match !



Studying Gradients and their Propagation
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The normalized (Xavier/glorot) initialization

Now, using the normalized initialization,

Objective of maintaining activation variances and back-
propagated gradients variance satisfied.

Now the meaningful gradient still flows even in the deeper 
networks without losing variance



Studying Gradients and their Propagation
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The normalized (Xavier/glorot) initialization

. . . . . . 

𝒏𝒊

𝒏𝒊+𝟏

Here, 𝒏𝒊 is called as fan-in
& 𝒏𝒊+𝟏 is called as fan-out

Another small note!
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Evaluation

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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1. Xavier (Glorat) initialization

Two milestone initialization techniques

2. Kaiming (He) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 

networks." JMLR Workshop and Conference Proceedings, 2010.

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet 

classification." ICCV, 2015.
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Propositions of the paper

ReLU PReLU

Proposition 1. 
Parametric Rectifier

Proposition 2.
Initialization technique for ReLU

* What we are to focus on in this presentation 
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Motivation

Xavier derivation is based on linear assumption and initial stage

Slope = 1

Non linear

ReLU

Their symmetric activations

However, It is invalid for ReLU
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Derivation

- Derivation mainly follows Xavier init.

- But they start from deep CNN whose weights drawn from Gaussian 
distribution 

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second 
Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

c :input channels
k: filter size

d: filter number (𝑐𝑙 = 𝑑𝑙−1)
n = k2c

𝑩asic notations
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Derivation

- Derivation mainly follows Xavier init.

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second 
Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

c :input channels
k: filter size

d: filter number (𝑐𝑙 = 𝑑𝑙−1)
n = k2c

𝑩asic notations

- But they start from deep CNN whose weights drawn from Gaussian 
distribution 
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𝑺tep 1. 

Forward propagation case

As elements in 𝑥𝑙, 𝑊𝑙 is mutually independent

Zero mean w, variance of product of independent variables gives

𝑺tep 2. 

Let wl−1 have symmetric dist. around zero and bl−1 = 0
(can be achieved by the initialization), if f(.) is ReLU,

𝑺tep 3. 

(1)

(2)

(3)

Put (3) into (2) and consider L layer
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Forward propagation case

If this term is 1, variance is consistent over layers =

It leads to Gaussian with 0 mean, 
2

𝑛𝑙
std. (bias=0)

This is the Kaiming initialization !

(derived from forward-propagation)
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Backward propagation case

Consider gradients with notations

Skip derivational details
(The procedure is similar)

Should be ‘1’

It leads to Gaussian with 0 mean, 
2

ො𝑛𝑙
std. (bias=0) 

This is also the Kaiming initialization !
(derived from backward-propagation)
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Forward eq. vs Backward eq.

Standar deviation
in Gaussian

Forward case Backward case

2

ො𝑛𝑙

2

𝑛𝑙

Kaiming He init.

(ෝn𝑙 = 𝑘𝑙
2𝑑𝑙)(n𝑙 = 𝑘𝑙

2𝑐𝑙)

* 𝑐𝑙 = 𝑑𝑙−1
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Forward eq. vs Backward eq.

Standar deviation
in Gaussian

It is sufficent to use one of the two.

Forward case Backward case

2

ො𝑛𝑙

2

𝑛𝑙

Kaiming He init.

(ෝn𝑙 = 𝑘𝑙
2𝑑𝑙)(n𝑙 = 𝑘𝑙

2𝑐𝑙)

* 𝑐𝑙 = 𝑑𝑙−1

using 
2

ො𝑛𝑙
as std for example,                               in forward case equation 

become  
𝑐2

𝑑𝐿
, which is not a diminishing number 



42

The results

CNN with 22 layer CNN with 30 layer

Gradient diminishing in Xavier

ImageNet classification task
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Discussion

• For Kaiming initialization, excessive increase/decrease of number of filters 
(or channels) in CNN may be undesirable

(as variance preservation doesn’t hold for back and forward at the same time)

• Use Kaiming for extremely deeper networks. 

• Initialization and activation should be PAIRED

Xavier : symmetric (tanh, softsign)
Kaiming : ReLU-like 
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Thank you !
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Appendix A. variance of product
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Appendix B. Gaussian  vs Uniform

Note 1. [1] compared a Gaussian distribution to a uniform distribution and 
found differences on the conditioning of the Jacobian matrix of a neural 

network, but found no relation to the convergence speed  

[1] R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second 
Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

Note 2. Extensive experiments are given in [2]
(seems no difference for me)

[2] Pedamonti, Dabal. “Comparison of non-linear activation functions for deep neural networks on MNIST classification task.” arXiv preprint 
arXiv:1804.02763 (2018).


