

On the Inspection of Initialization and Activations of Neural Networks

Presentor: Jinduk park

School of Mathematics and Computing (Computational Science and Engineering) Yonsei Univ, Seoul, Korea

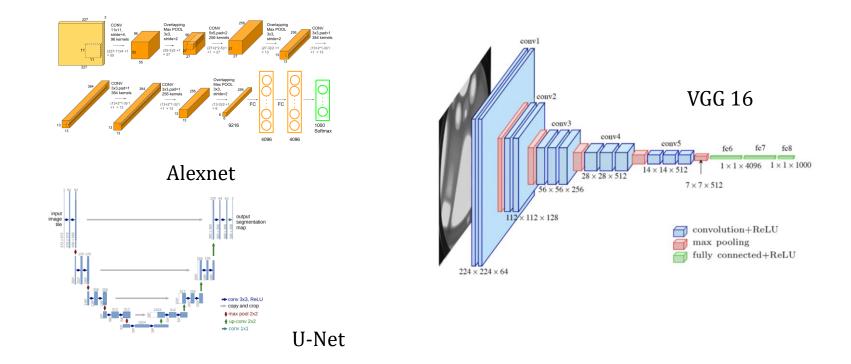
jindeok6@yonsei.ac.kr

1

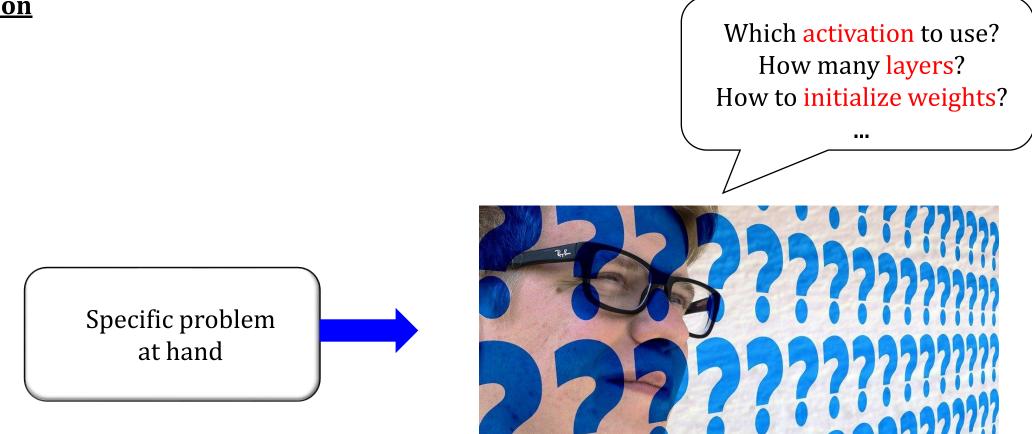
Fundamental and emerging trends in graph learning class

Introduction

There are too many options to choice for designing neural network.



Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation." Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Simonyan et al. "Very deep convolutional networks for large-scale image recognition." **Motivation**



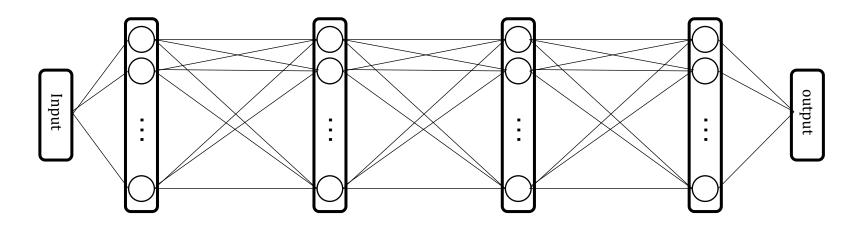
Many researcher usually do the puzzle game on those options.

Motivation

However,

those components are not mutually independent and they actucally affect each other.

The Neural Networks



Better understanding its **internal working** : helpful to design neural network architectures

Two milestone initialization techniques

1. Xavier (Glorat) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." JMLR Workshop and Conference Proceedings, 2010.

2. Kaiming (He) initialization

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV, 2015.

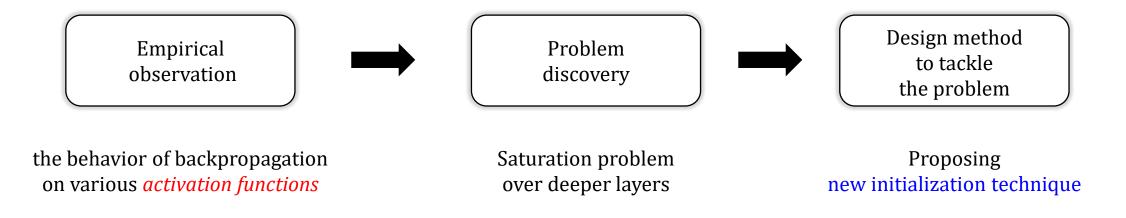
Two milestone initialization techniques

1. Xavier (Glorat) initialization

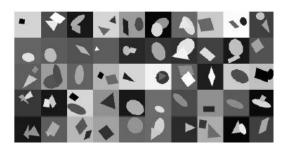
Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." JMLR Workshop and Conference Proceedings, 2010.

2. Kaiming (He) initialization

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV, 2015.

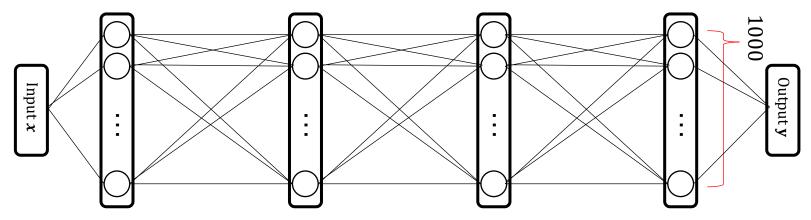


Dataset



Shapeset-3x2 dataset with small resolution ~ 64 x 64, gray-scale

The Neural Networks



1) 4 hidden layer with **n=1000** (same) neurons per each layer

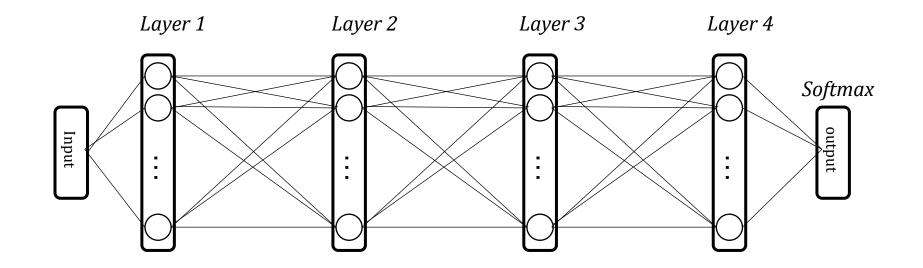
2) Different activations depending on the experiment

3) Weight initialization (standardly used heuristic)

$$W \sim U(-\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}})$$

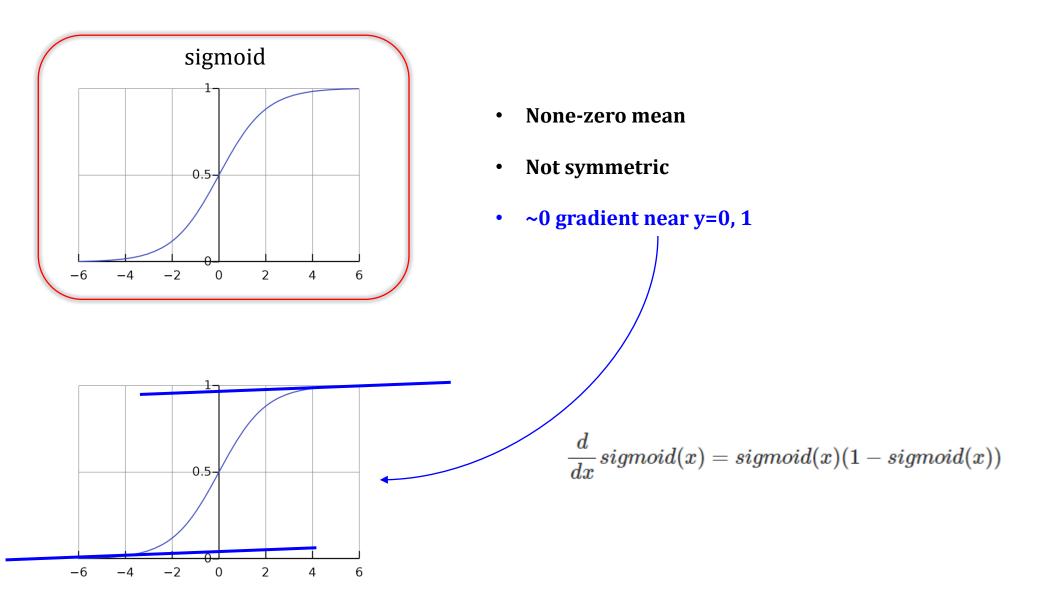
(What conventionally used at that time)

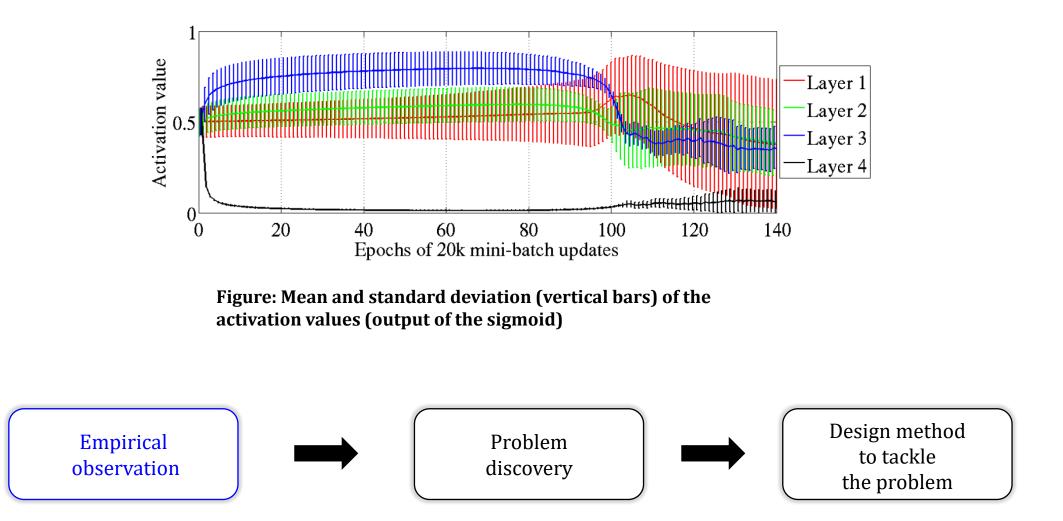
Basic Terms and Notations



- 'Layer i' : the output of the i-th hidden layer
 - *f*(.): activation function
 - z^i : activation vector at layer i
 - $s^i = z^i W^i + b^i$
 - $\mathbf{z}^{i+1} = f(\mathbf{s}^i)$

Experiment 1) All layer activations \rightarrow set to *sigmoid*





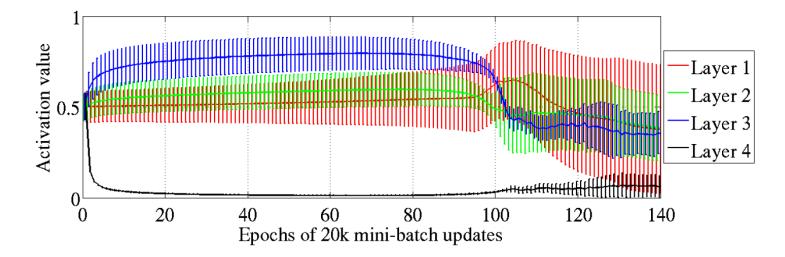
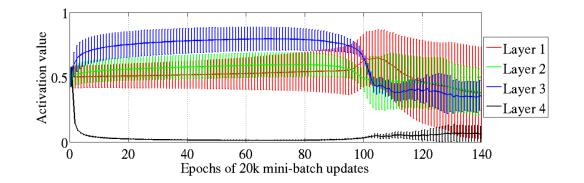


Figure: Mean and standard deviation (vertical bars) of the activation values (output of the sigmoid)

Observation: Excessive saturation All the sigmoid activation at layer 4 : saturated to 0, until ~100 epochs



A Hypothesis:

" the transformation that the lower layers of the randomly initialized network computes initially is **not useful** to the classification task"

Output layer:

 $softmax(Wz^{(4)} + b)$

Initially ($W \sim U(-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}})$),

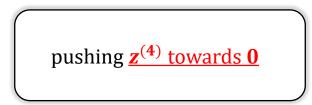
The output layer is correlated mostly with dominant variations of x, not predictive of y

 \longrightarrow Rely mostly on **b** (learned very quickly) rather than $Wz^{(4)}$

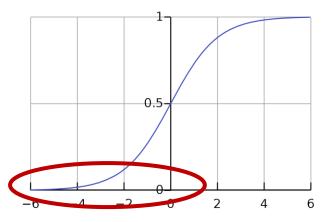
 \longrightarrow The network pushes $Wz^{(4)}$ towards 0,

which can be achieved by pushing $\underline{z^{(4)}}$ towards **0**

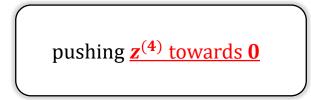
At the initial stage of training



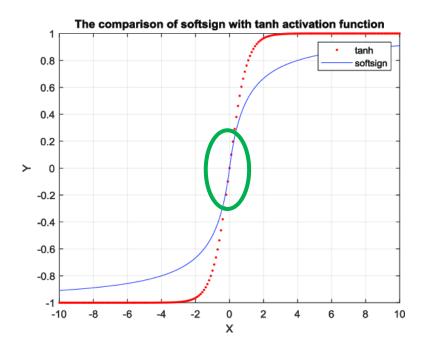
This is **not a good** thing for **sigmoid** function, which is **not symmetric**.



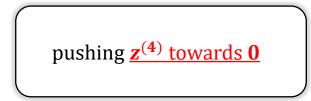
Since the meaningful gradient cannot flow with this condition.



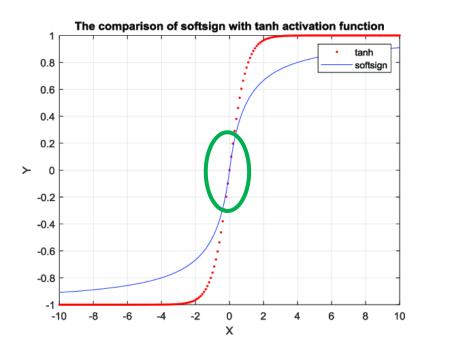
But this is **good** thing **symmetric functions** ! (e.g., hyperbolic tangent, softsign)

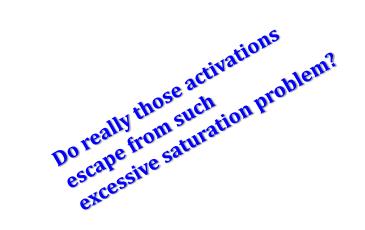


Effat et al, " Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. "



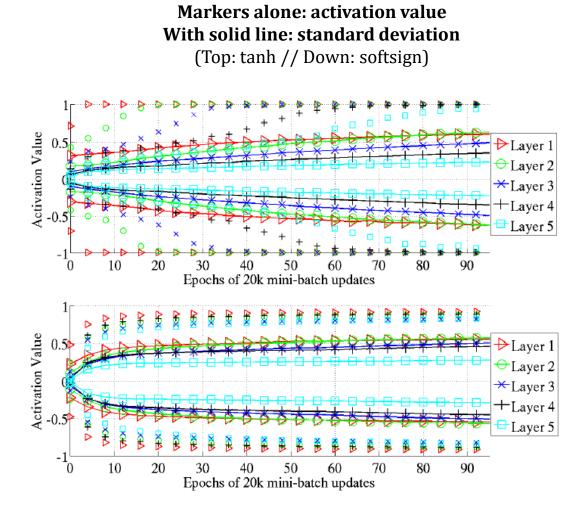
But this is **good** thing **symmetric functions** ! (e.g., hyperbolic tangent, softsign)





Effat et al, " Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. "

Supervised learning with Activations: 2) tanh / softsign (symmetric)



Using symmetric activation networks ..

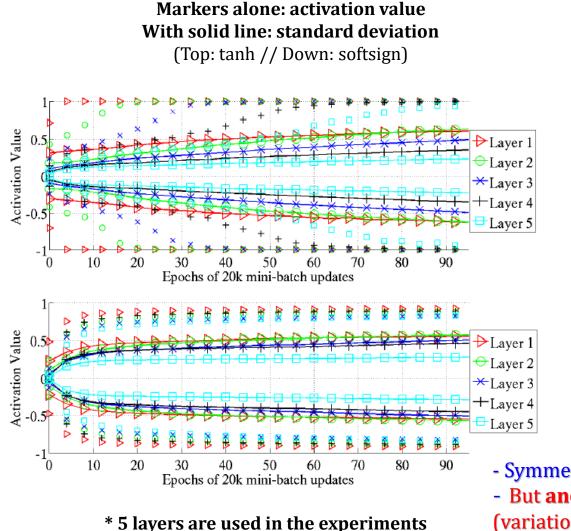
Observation1 : The saturation behavior **is gone !!**

Observation2 : Variation is getting smaller as go to deeper layers

* 5 layers are used in the experiments

Xavier et al, "Understanding the difficulty of training deep feedforward neural networks." (2010).

Supervised learning with Activations: 2) tanh / softsign (symmetric)



Using symmetric activation networks ..

Observation1 : The saturation behavior **is gone !!**

Observation2 : Variation is getting smaller as go to deeper layers

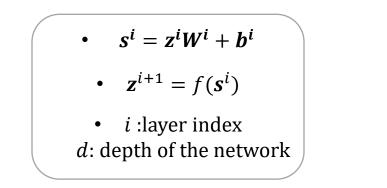
Symmetric activation : solve excessive saturation
But another problem is observed

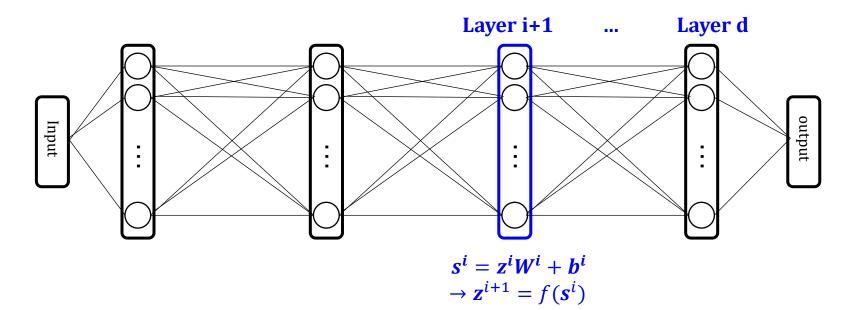
(variation is getting smaller) : Let's solve it with weight initialization !

Xavier et al, "Understanding the difficulty of training deep feedforward neural networks." (2010).

Some settings:

- Symmetric activation with unit derivative (f'(0) = 1)
 - Considering initial stage : linear regime

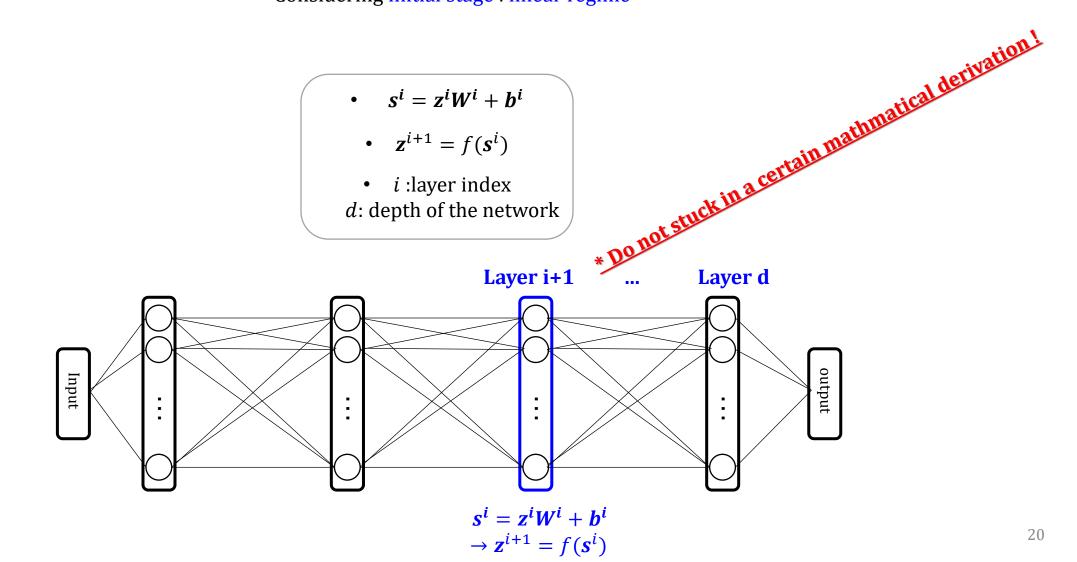




Some settings:

• Symmetric activation with unit derivative (f'(0) = 1)

• Considering initial stage : linear regime



Some settings:

- Symmetric activation with unit derivative (f'(0) = 1)
 - Considering initial stage : linear regime

•
$$s^i = z^i W^i + b^i$$

• $z^{i+1} = f(s^i)$

• *i* :layer index *d*: depth of the network

$$\begin{split} \frac{\partial Cost}{\partial s_k^i} &= f'(s_k^i) W_{k,\bullet}^{i+1} \frac{\partial Cost}{\partial s^{i+1}} \\ \frac{\partial Cost}{\partial w_{l,k}^i} &= z_l^i \frac{\partial Cost}{\partial s_k^i} \\ \end{split}$$

in a linear regime at the initial stage $Var(z_{i}^{l}) = Var(\sum_{k=1}^{n_{l}} W_{ik}^{l} z_{k}^{l-1})$

$$Var[z^{i}] = Var[x] \prod_{i'=0}^{i-1} n_{i'} Var[W^{i'}]$$

Some settings:

- Symmetric activation with unit derivative (f'(0) = 1)
 - Considering initial stage : linear regime

• $s^{i} = z^{i}W^{i} + b^{i}$ • $z^{i+1} = f(s^{i})$

• *i* :layer index *d*: depth of the network

$$\frac{\partial Cost}{\partial s_k^i} = f'(s_k^i) W_{k,\bullet}^{i+1} \frac{\partial Cost}{\partial s_k^{i+1}}}{\frac{\partial Cost}{\partial w_{k,\bullet}^i}} = s_i^i \frac{\partial Cost}{\partial s_k^i}$$

$$f'(s_k^i) \approx 1$$

$$Var[z^i] = Var[x] \prod_{i'=0}^{i-1} n_{i'} Var[W^{i'}]$$
Expand
with
chain rule
$$Var[\frac{\partial Cost}{\partial s^i}] = Var[\frac{\partial Cost}{\partial s^d}] \prod_{i'=i}^d n_{i'+1} Var[W^{i'}] \quad (1)$$
Variance of the back-propagated gradient

$$Var[\frac{\partial Cost}{\partial w^i}] = \prod_{i'=0}^{i-1} n_{i'} Var[W^{i'}] \prod_{i'=i}^{d-1} n_{i'+1} Var[W^{i'}]$$

$$Variance of the back-propagated gradient
$$Var[\frac{\partial Cost}{\partial w^i}] = \prod_{i'=0}^{i-1} n_{i'} Var[W^{i'}] \prod_{i'=i}^{d-1} n_{i'+1} Var[W^{i'}]$$

$$Variance of the gradient on the weights$$$$

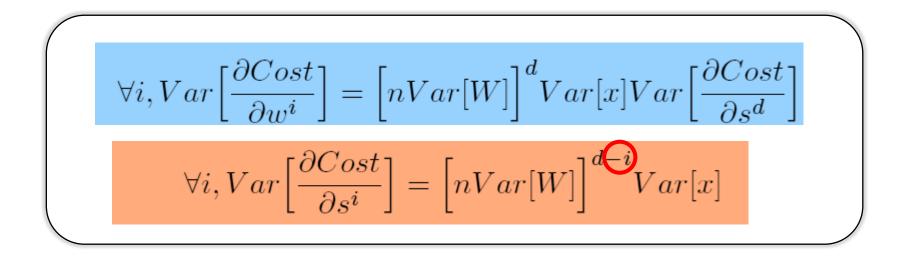
$$Var\left[\frac{\partial Cost}{\partial s^{i}}\right] = Var\left[\frac{\partial Cost}{\partial s^{d}}\right] \prod_{i'=i}^{d} [n_{i'+1}] Var[W^{i'}] \quad (1)$$

$$Var\left[\frac{\partial Cost}{\partial w^{i}}\right] = \prod_{i'=0}^{i-1} n_{i'} Var[W^{i'}] \prod_{i'=i}^{d-1} [n_{i'+1}] Var[W^{i'}] \quad (1)$$

$$\times Var[x] Var\left[\frac{\partial Cost}{\partial s^{d}}\right]. \quad (2)$$

Now let's consider the case when **all layers have same width** *n*, **and weight variance is shared.** then **(1)**, **(2)** become:

$$\forall i, Var\left[\frac{\partial Cost}{\partial s^{i}}\right] = \left[nVar[W]\right]^{d-i} Var[x]$$
$$\forall i, Var\left[\frac{\partial Cost}{\partial w^{i}}\right] = \left[nVar[W]\right]^{d} Var[x] Var\left[\frac{\partial Cost}{\partial s^{d}}\right]$$



Interesting properties: with symmetric activations,

1) Variance of the gradient on the weights is the same for all layers

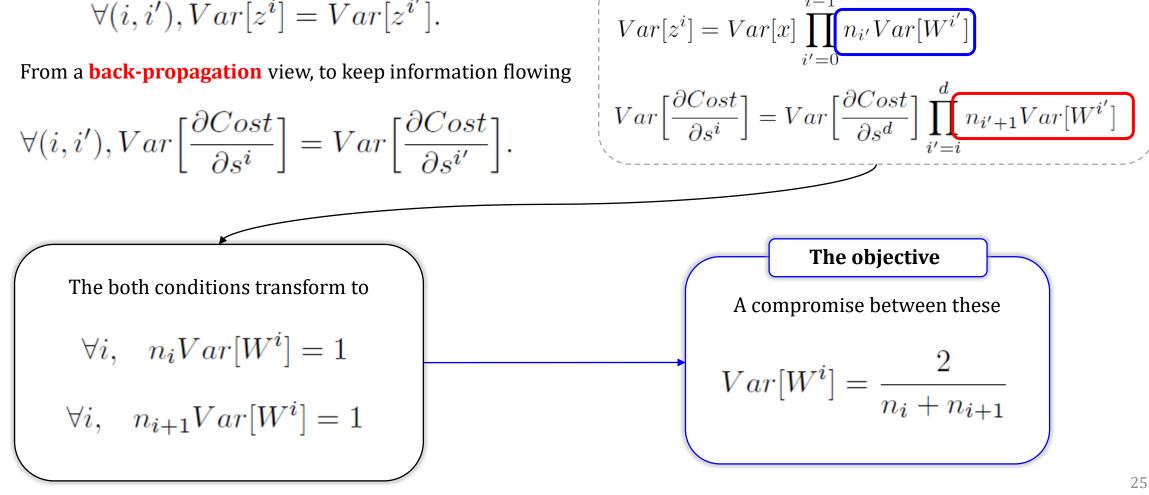
2) Variance of the back propagated gradient still vanish or explode as for different layers.

REMIND : Our aim (what we would like to be):

From a **forward-propagation** view, to keep information flowing, ٠

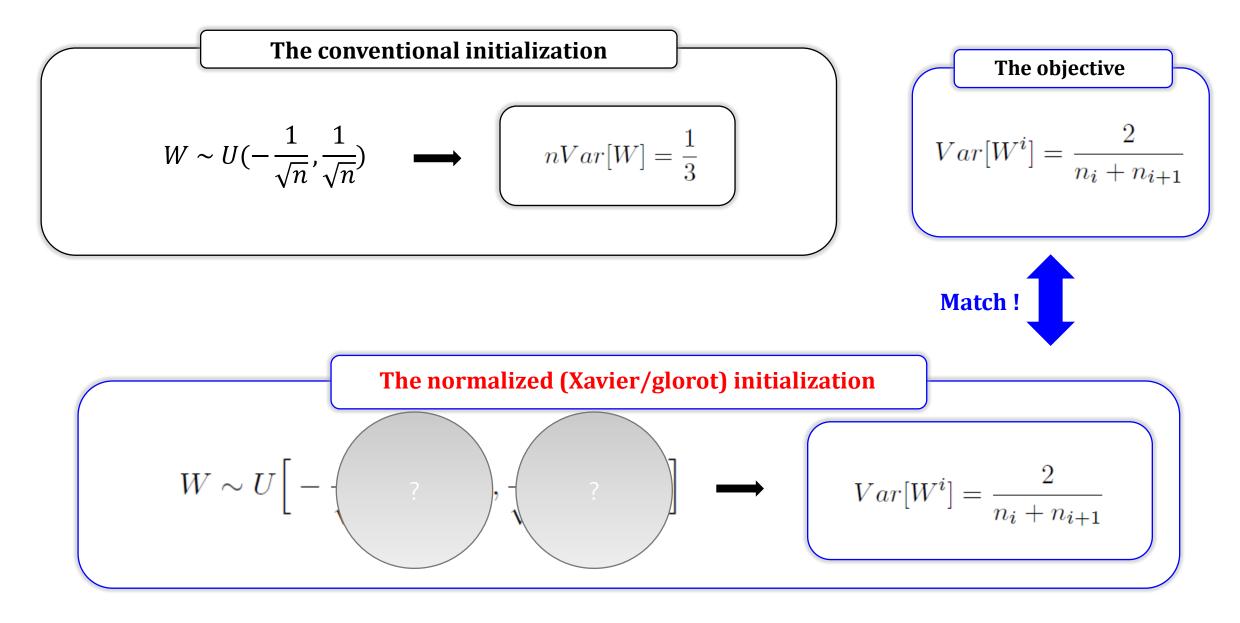
 $\forall (i, i'), Var[z^i] = Var[z^{i'}].$

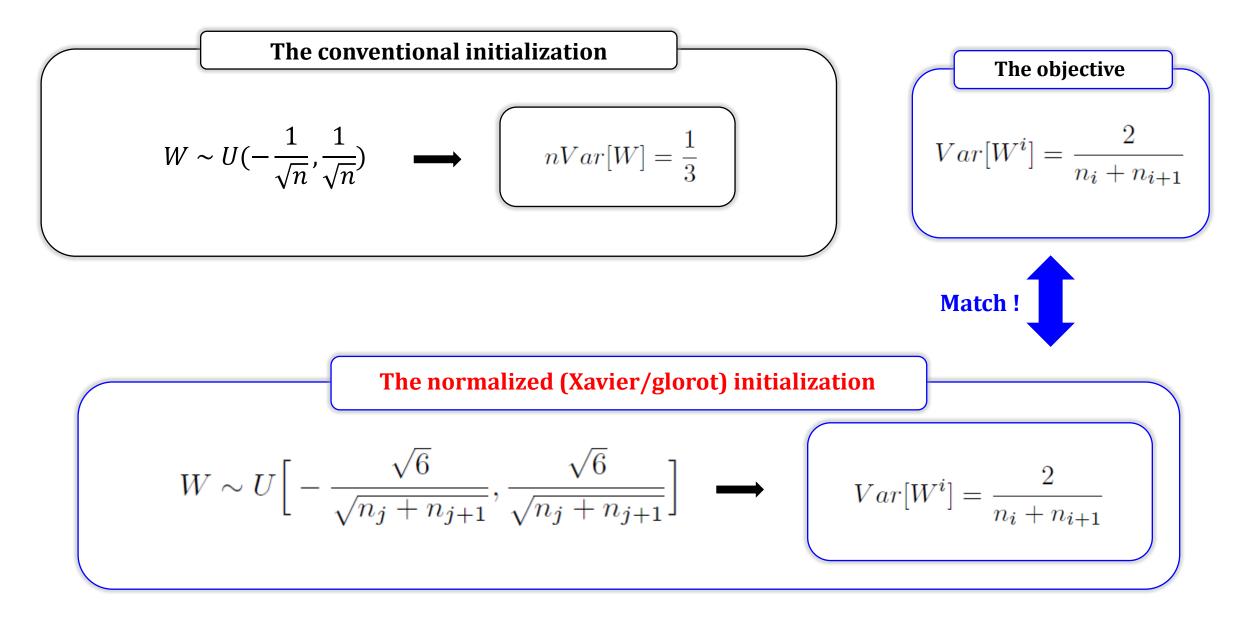
٠



All note: Name of the probability distribution	Probability distribution function	Mean	Variance
Binomial distribution	$\Pr\left(X=k\right) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Geometric distribution	$\Pr\left(X=k\right)=(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
Normal distribution	$f\left(x\mid\mu,\sigma^2 ight)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{\left(x-\mu ight)^2}{2\sigma^2}}$	μ	σ^2
	$f(x \mid a, b) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b \end{cases}$	$rac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential distribution	$f(x \mid \lambda) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Poisson distribution	$f(k \mid \lambda) = rac{e^{-\lambda}\lambda^k}{k!}$	λ	λ

https://en.wikipedia.org/wiki/Variance





The normalized (Xavier/glorot) initialization

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right] \rightarrow Var[W^i] = \frac{2}{n_i + n_{i+1}}$$

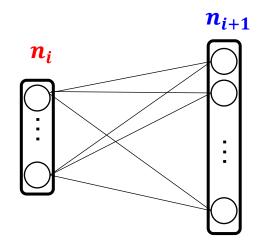
Now, using the normalized initialization,

Objective of **maintaining** activation variances and backpropagated gradients variance satisfied.

Now the meaningful gradient still flows even in the deeper networks without losing variance

The normalized (Xavier/glorot) initialization

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right] \rightarrow Var[W^i] = \frac{2}{n_i + n_{i+1}}$$

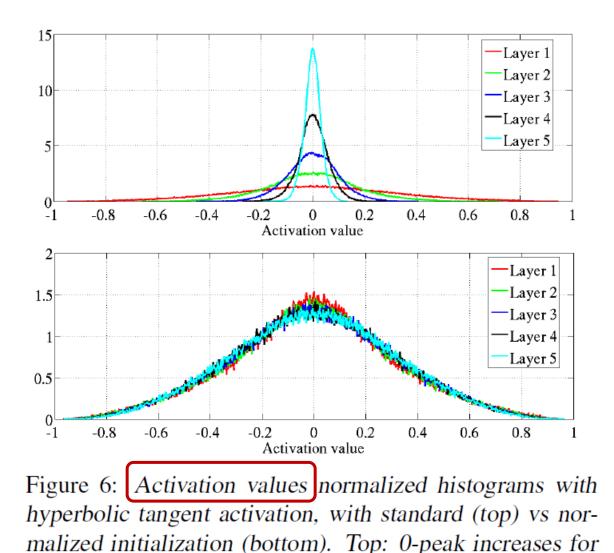


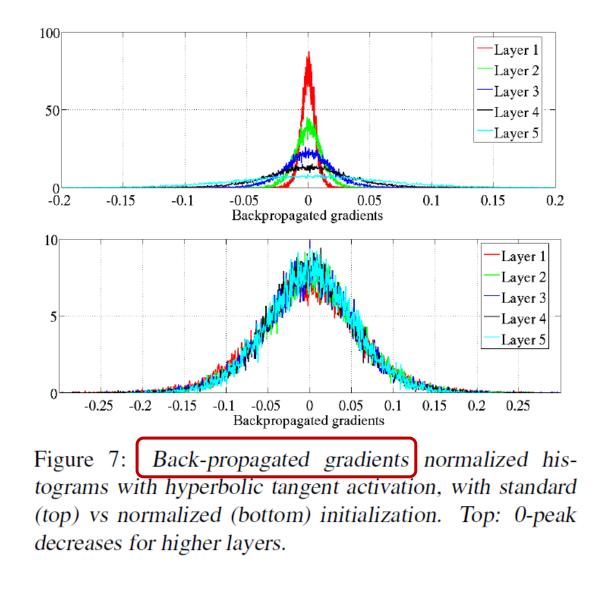
Another small note!

Here, n_i is called as fan-in & n_{i+1} is called as fan-out

Evaluation

higher layers.





Two milestone initialization techniques

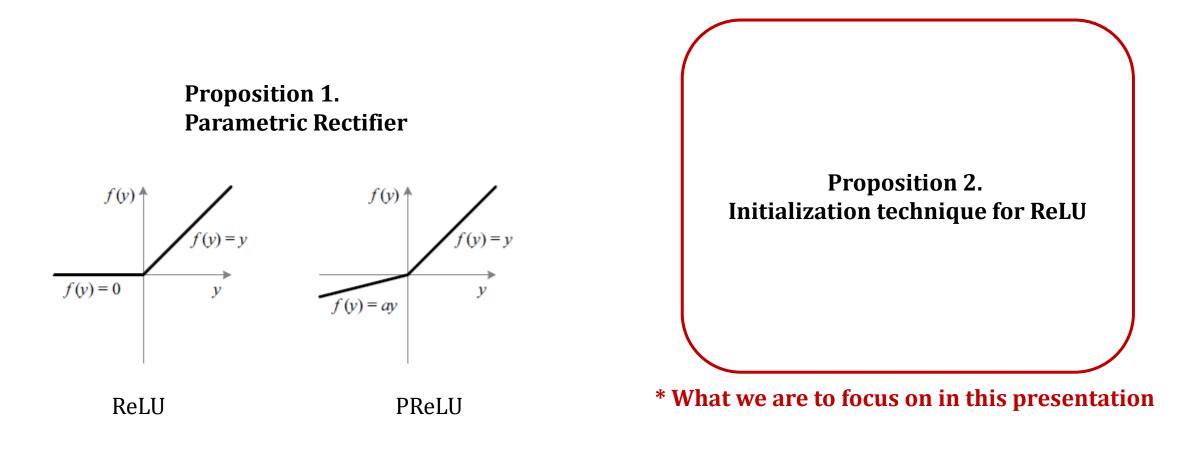
1. Xavier (Glorat) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." JMLR Workshop and Conference Proceedings, 2010.

2. Kaiming (He) initialization

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV, 2015.

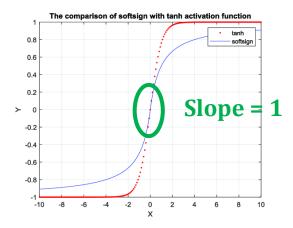
Propositions of the paper



Motivation

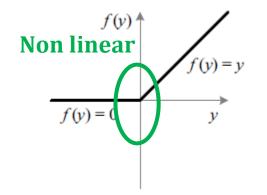
Xavier derivation is based on linear assumption and initial stage

Their symmetric activations



However, It is invalid for ReLU

ReLU



Derivation

- Derivation mainly follows Xavier init.

- But they start from deep CNN whose weights drawn from Gaussian distribution

Basic notations

$$\mathbf{y}_l = \mathbf{W}_l \mathbf{x}_l + \mathbf{b}_l$$
$$\mathbf{x}_l = f(\mathbf{y}_{l-1})$$

c :input channels k: filter size d: filter number ($c_l = d_{l-1}$) $n = k^2 c$

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

Derivation

- Derivation mainly follows Xavier init.

- But they start from deep CNN whose weights drawn from Gaussian distribution

Basic notations

$$\mathbf{y}_l = \mathbf{W}_l \mathbf{x}_l + \mathbf{b}_l$$
$$\mathbf{x}_l = f(\mathbf{y}_{l-1})$$

*As derivation is basically same with Kavier, will further skip details here.

c :input channels k: filter size d: filter number ($c_l = d_{l-1}$) $n = k^2 c$

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

Forward propagation case

Step 1.

 $\begin{aligned} \mathbf{y}_l &= \mathbf{W}_l \mathbf{x}_l + \mathbf{b}_l \\ \mathbf{x}_l &= f(\mathbf{y}_{l-1}) \end{aligned}$

As elements in x_l , W_l is mutually independent

$$Var[y_l] = n_l Var[w_l x_l] \tag{1}$$

Zero mean w, variance of product of independent variables gives

$$Var[y_l] = n_l Var[w_l] E[x_l^2]$$
⁽²⁾

Step 2.

Let w_{l-1} have symmetric dist. around zero and $b_{l-1} = 0$ (can be achieved by the initialization), if f(.) is ReLU,

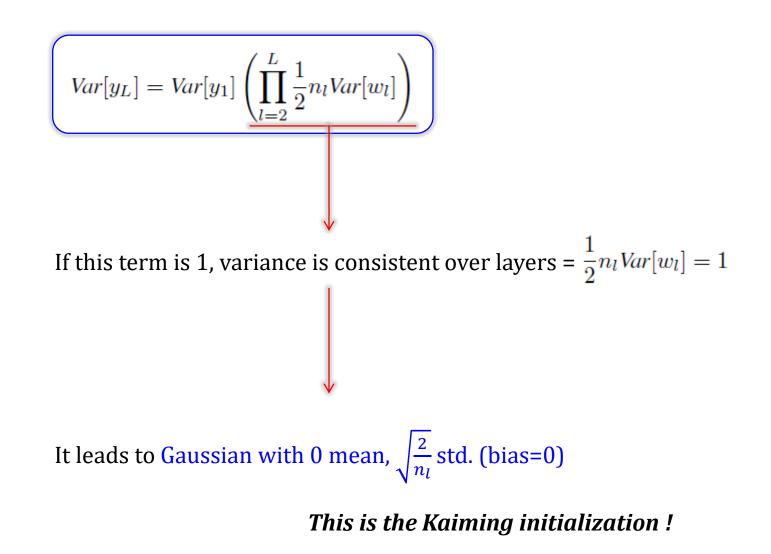
$$E[x_l^2] = \frac{1}{2} Var[y_{l-1}]$$
(3)

Step 3.

Put (3) into (2) and consider L layer

$$Var[y_L] = Var[y_1] \left(\prod_{l=2}^{L} \frac{1}{2} n_l Var[w_l]\right)$$

Forward propagation case



(derived from forward-propagation)

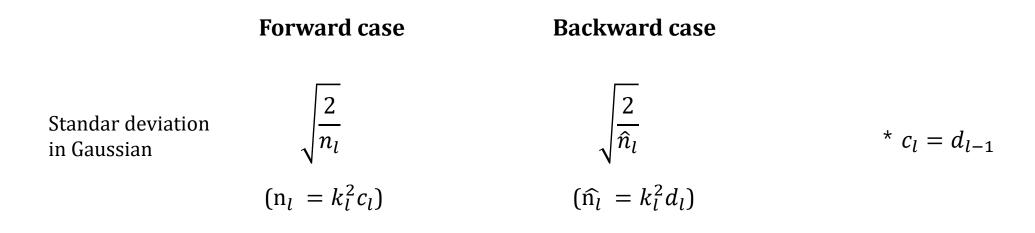
Backward propagation case

Consider gradients with notations

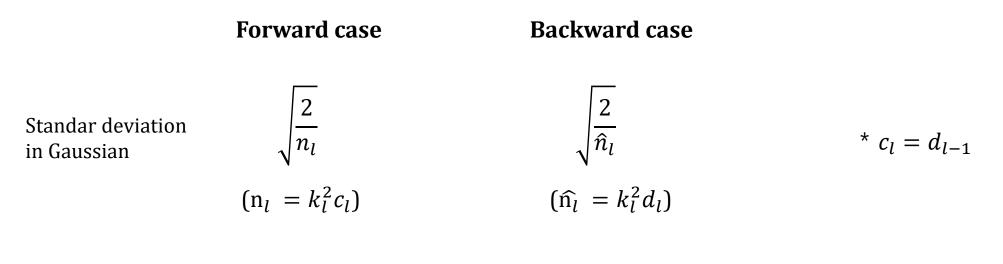
This is also the Kaiming initialization ! (derived from backward-propagation)

Forward eq. vs Backward eq.

Kaiming He init.



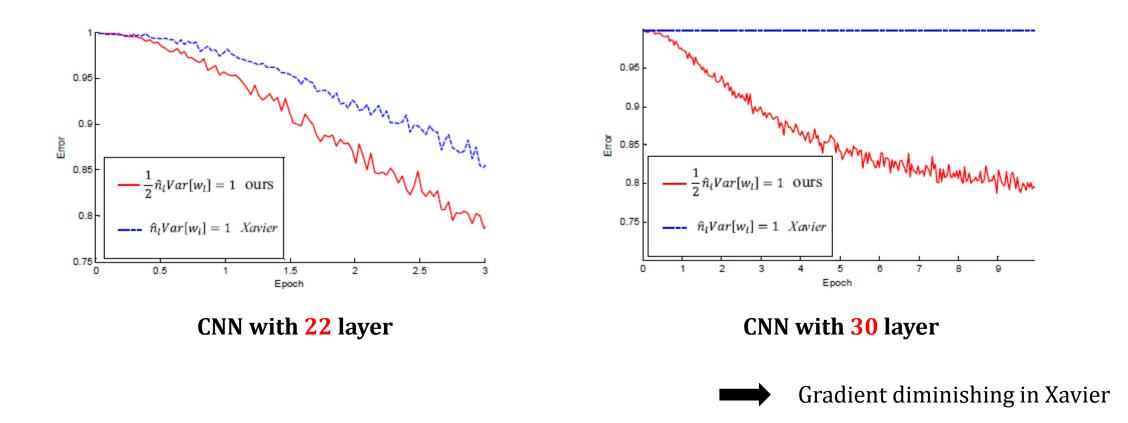
Kaiming He init.



It is sufficent to use **one of the two.**
using
$$\sqrt{\frac{2}{\hat{n}_l}}$$
 as std for example, $\prod_{l=2}^{L} \frac{1}{2} n_l Var[w_l]$ in forward case equation become $\frac{c_2}{d_L}$, which is not a diminishing number

<u>The results</u>

ImageNet classification task



Discussion

• Initialization and activation should be PAIRED

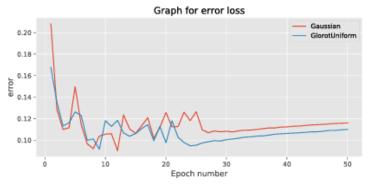
Xavier : symmetric (tanh, softsign) Kaiming : ReLU-like

- Use Kaiming for extremely deeper networks.
- For Kaiming initialization, excessive increase/decrease of number of filters (or channels) in CNN may be undesirable (as variance preservation doesn't hold for back and forward at the same time)

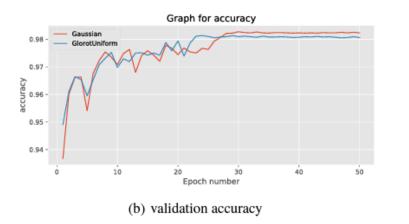
Thank you !

If two variables X and Y are independent, the variance of their product is given by $Var(XY) = [E(X)]^2 Var(Y) + [E(Y)]^2 Var(X) + Var(X) Var(Y).$ Equivalently, using the basic properties of expectation, it is given by $Var(XY) = E(X^2) E(Y^2) - [E(X)]^2 [E(Y)]^2.$

Appendix B. Gaussian vs Uniform



(a) validation error



Note 1. [1] compared a Gaussian distribution to a uniform distribution and found differences on the conditioning of the Jacobian matrix of a neural network, **but found no relation to the convergence speed**

Note 2. Extensive experiments are given in [2] (seems no difference for me)

[1] R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l.

[2] Pedamonti, Dabal. "Comparison of non-linear activation functions for deep neural networks on MNIST classification task." arXiv preprint 46 arXiv:1804.02763 (2018).