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Introduction

There are too many options to choice for designing neural network.
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U-Net

Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation.”
Krizhevsky et al. "Imagenet classification with deep convolutional neural networks."

Simonyan et al. "Very deep convolutional networks for large-scale image recognition."



Motivation

-

Specific problem
at hand

Which activation to use?
How many layers?
How to initialize weights?

~

)

Many researcher usually do the puzzle game on those options.



Motivation

However,

those components are not mutually independent and they actucally affect each other.

The Neural Networks
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Better understanding its internal working :
helpful to design neural network architectures



Two milestone initialization techniques

1. Xavier (Glorat) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." JMLR Workshop and Conference Proceedings, 2010.

2. Kaiming (He) initialization

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." ICCV, 2015.
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Logical flow of the research

Design method

Empirical - Problem -
observation discovery thteol;c?cflbjgm
the behavior of backpropagation Saturation problem Proposing

on various activation functions over deeper layers new initialization technique



Basic Experimental Settings

Dataset

Shapeset-3x2 dataset
with small resolution ~ 64 x 64, gray-scale

O
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1) 4 hidden layer with n=1000 (same) neurons per each layer
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2) Different activations depending on the experiment

3) Weight initialization (standardly used heuristic)

1 1 (What conventionally used at that time)
W~U(——,—
CFm 7 8




Basic Terms and Notations

Layer 1 Layer 2 Layer 3 Layer 4
Softmax
5 g
E E

* ‘Layeri’: the output of the i-th hidden layer
* f(.):activation function
« z':activation vector at layer i
« st=z'W'+ b

o Zi+1 — f(Si)



Supervised learning with Activations: 1) siemoid

Experiment 1) All layer activations — set to sigmoid

/ sigmoid \

1

* None-zero mean

Not symmetric

~(0 gradient near y=0, 1

digigmoid(;r} = sigmoid(z)(1 — sigmoid(zx))
T
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Supervised learning with Activations: 1) siemoid
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Epochs of 20k mini-batch updates
Figure: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid)
Empirical ‘ Problem ‘ Destlgrtl mkelthod
observation discovery h ° acble
e problem

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Supervised learning with Activations: 1) siemoid
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gy

Activation value

0 20 40 60 80 100 120 140
Epochs of 20k mini-batch updates

Figure: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid)

3

Observation: Excessive saturation
All the sigmoid activation at layer 4 : saturated to 0, until ~100 epochs

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Supervised learning with Activations: 1) siemoid

Activation value

e
n

/

T 4
I m T —Layer 1 A Hypothesis:
'LIFI i H” _i:i:i‘;‘ “ the transformation that the lower layers
—Layer 4 of the randomly initialized network computes initially is
‘ . J not useful to the classification task”
20 40 60 80 100 120 140 \_
Epochs of 20k mini-batch updates
Output layer:

Initially (W ~ U(— —

softmax(Wz*) + b)

1

v

The output layer is correlated mostly with dominant variations of x, not predictive of y

——> Rely mostly on b (learned very quickly) rather than Wz®*

—> The network pushes Wz* towards 0,

which can be achieved by pushing z*) towards 0 ‘/

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Supervised learning with Activations: 1) siemoid

At the initial stage of training

pushing z**) towards 0

This is not a good thing for sigmoid function,
which is not symmetric.

/

- 2 4 6

Since the meaningful gradient cannot flow with this condition.

——> Excessive saturation problem

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Supervised learning with Activations: 1) siemoid

pushing z*) towards 0

But this is good thing symmetric functions !
(e.g., hyperbolic tangent, softsign)

The comparison of softsign with tanh activation function

.""r-_

*  tanh
softsign | 7

Effat et al, " Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. “
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Supervised learning with Activations: 1) siemoid

pushing z*) towards 0

But this is good thing symmetric functions !

(e.g., hyperbolic tangent, softsign)

The comparison of softsign with tanh activation function
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Supervised learning with Activations: 2) tanh / softsign (symmetric)

Markers alone: activation value
With solid line: standard deviation
(Top: tanh // Down: softsign)

O . * . .
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Activation Value
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* 5 layers are used in the experiments

Using symmetric activation networks ..

Observation1 :
The saturation behavior is gone !!

Observation2 :
Variation is getting smaller as go to deeper layers

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Supervised learning with Activations: 2) tanh / softsign (symmetric)

Markers alone: activation value
With solid line: standard deviation
(Top: tanh // Down: softsign)

. x H : B
) X i + T ‘ :

I:I - B Layer 1 USlIlg symmetric activation networks ..

“Layer 2
*Layer 3
—+Layer 4

Layer 5

Activation Value

Observation1 :
The saturation behavior is gone !!

Epochs of 20k mini-batch updates

[+ .
G Observation?2 :
b . . . .
E Variation is getting smaller as go to deeper layers
=
B
5
-,
£
®
10 20 3 4 50 60 70 8 90  _ ; ;
Epochs of 20k mini-batch updaes Symmetric activation : s-olve excessive saturation
- But another problem is observed
* 5 layers are used in the experiments (variation is getting smaller) : Let's solve it with weight initialization !

Xavier et al, " Understanding the difficulty of training deep feedforward neural networks. " (2010).
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Studying Gradients and their Propagation

Some settings:
Symmetric activation with unit derivative (f'(0) = 1)

Considering initial stage : linear regime

+ st=ZIWi 4 b

. Zi+1 — f(Si)

» {:layer index
d: depth of the network

Layer i+1 Layer d

nduj

st = z'W' + b
N Zi+1 — f(Si)

mdino
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Studying Gradients and their Propagation

Symmetric activation with unit derivative (f'(0) = 1)

Some settings:

Considering initial stage : linear regime

e st=zW'+p
l+1 f(Sl)
* i:layer index
d: depth of the network

in a linear regime at the initial stage

Var(zl) = Var(z Wka

OC ost _ (s )H :.r+1d( ost
s, T ® Osttl
dCost 1‘5)( ost

owl, ' st
f'(sy) ~ 1
Varlz'] = Var[x H ng Var[W? }‘
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Studying Gradients and their Propagation
Some settings: ; iari ;
« Symmetric activation with unit derivative (f'(0) = 1) * s L:1Z w +lb
* Considering initial stage : linear regime f(s%)
* {:layer index
d: depth of the network

AdC ost (s )H iy10Cost i—1
= S _ . ./
" ICost dk( ? T f'(sy) = 1 Var[z'] = Varla] ] [ nivarw™]
dCost  ,0Co0s — i'=0
owj T ost

- L d
Expand / dCost _ 10Cost ] L \
with var [ Os' ] - m*[ Osd ] | | L L R €
chain rule 1 _ "‘3’:&_ ) Variance of the back-propagated gradient
(_)( 0st . it - . _at
Var [ 5 ] — H ng VarW* | H nirq|Var[W* |
t"=0 1'=1
dCost
X Var(z|Var [—d] (2)
Qemember these Js Variance of the gradient on the weights
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S

t

udving Gradients and their Propagation

/

\

dC ost . [0Cost
] - m[ Js? ]

I’; ar [ ()H -

i—1

i’ =1

d—1

d
H .”_i_r+1I’_.?a]..“.{:_v-ir] (1)

~

Var[W?]

. [0Cost , i’
I {-!-'f'[ E_').u?-j_ :| — H I I (E'.-'"U'I’. ’ ] H .}?'1"'4—1

1'=0

X Var(z|Var [

i =i

0C ost ]

0sd

(2)

/

Now let’s consider the case when all layers have same width n,
and weight variance is shared. then (1), (2) become:

-

\

dCost d—1i
W,Var[ - ] = [nVaT'[V[/]] Var|z|
Js?
dC ost d dCost
\?’LV{H'[ 81;9 ] — [n,Var[LV]] Va?'[;t:]Var[ a:: ]
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Studying Gradients and their Propagation

-

~

\_

, 0C'ost d 0C'ost
Vi, Var [W] — [nVa?'[W]] Var|z|Var [W]
dCost )

Vi, Var [8—08] = [nVaT'[W]] Var|z|

S'?—

/

Interesting properties:
with symmetric activations,
1) Variance of the gradient on the weights is the same for all layers
vanish or explode

different layers.

24



Studying Gradients and their Propagation

REMIND : Our aim (what we would like to be):

* From a forward-propagation view, to keep information flowing,

- F

V(i.i'),Var[z']| = Var[z"].

* From a back-propagation view, to keep information flowing

0s?

dCost IC ost
\;JJ(E EI) I";(l'-'-" [d—m] — I"'?(L'.-'” [i} .
- '5.'3_

i1
Varlz'] = Var|z] H na Var[Ww'
i’ =
v ..[E)COSI}] v _.'E)C.'Osf] d
M Tast 1T YT o

ng 41 Var[W* |

-
=1

//

The both conditions transform to

Vi. niVar[W' =1

/—[ The objective ]—\

A compromise between these

Vi, mniqVar[Wi =1

\ %

\ 4

2

Va"’“mfi] . + N1
i i

\_

/
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Studying Gradients and their Propagation

Name of the probability distribution Probability distribution function Mean | Variance
n
Binomial distribution Pr(X =k)= (k)Pkfl —p)"F np np(l — p)
1 1-—
Geometric distribution Pr(X=k)=(1-p)""'p » ( EP]
p
1 E _u}z
Normal distribution flz|p,o?) = e 27 7 o
( ] \ 2ma?
1
— fora<x <b, ERPRY
Uniform distribution (continuous) f(z | a,b) =< o¢ - atb| (b-a)
0 forz <aorz>D>b 2 12
. e 1 ]
Exponential distribution flz | X)=2e™"" X 3z
e Ak
Poisson distribution flk|A) = ™ A

https://en.wikipedia.org/wiki/Variance
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Studying Gradients and their Propagation

-

( : C ire 1 s )
| The conventional initialization ] \ The obiect
/—| jective ]—\
1 1 1 L 2
~ o . T ’ T 17 — = -[;"T e '['I' 1 —
W~ U( NN —) nVar|W] 3 ar[W"] ni + Nis1
y \ /
Match !
/ The normalized (Xavier/glorot) initialization \
4 )
W ~U| — i 2
/ m—) Var W' =
ng + N1
\ /

/
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Studying Gradients and their Propagation

-

{ The conventional initialization ] \ [ The objective ]_\
1 1 1 iy 2
~U(——,— VarW) == Var[W' =
W ~U( NN — nVar/W]| 3 ar[W"] T
y NG /
Match !
/ The normalized (Xavier/glorot) initialization \
4 )
W~ Ul — V6 V6 , » 2
Y _ » T, _ — Var W' =
VI T Vg F g ni + nit1
- /

/
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Studying Gradients and their Propagation

-

W~ U[ -

S

The normalized (Xavier/glorot) initialization

—

V6 V6

Vi F i1 /g + it

-
2

| = | vew= 2

)

%

Now, using the normalized initialization,

Objective of maintaining activation variances and back-
propagated gradients variance satisfied.

‘ Now the meaningful gradient still flows even in the deeper

networks without losing variance

29



Studying Gradients and their Propagation

/ { The normalized (Xavier/glorot) initialization } \
4 )
v U[ S e } — Var[W? .
\/n'j Ll ??.-j_|_1 | \/??.-j + ﬂ"_fr'r—|‘1 A [ | } N n; + Ti+1
- /

. %

Another small note!

Here, n; is called as fan-in
& n;,q is called as fan-out




Evaluation
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Figure 6:

Activation values

normalized histograms with

hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: (O-peak increases for
higher layers.

Xavieretal, "

Understanding the difficulty of training deep feedforward neural networks. " (2010).

Figure 7:| Back-propagated gradients|normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.
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Two milestone initialization techniques

1. Xavier (Glorat) initialization

Glorot Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." JMLR Workshop and Conference Proceedings, 2010.

2. Kaiming (He) initialization

He Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." ICCV, 2015.
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Propositions of the paper

4 N

Proposition 1.
Parametric Rectifier

Proposition 2.

AR AR e v s .
L L Initialization technique for ReLU

F=y =y

v
L )

f()=0 y , y
70)=ay

\_ /

ReLLU PReLU * What we are to focus on in this presentation




Motivation

Xavier derivation is based on linear assumption and initial stage

Their symmetric activations

The comparison of softsign with tanh activation function

o

However, It is invalid for ReLU

ReLU

>

f(v)
Non linear

[' f{l«’] =y
fv) = l\.j yr
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Derivation

- Derivation mainly follows Xavier init.

- But they start from deep CNN whose weights drawn from Gaussian
distribution

Basic notations
yi = Wix; + by
X; = f(yi-1)

c :input channels
k: filter size
d: filter number (¢; = d;_4)
n = k?c

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second
Workshop on Neural Networks for Speech Processing, pp. 5{17, Trieste, Italy, 1993. Universit?a di Firenze, Edizioni LINT Trieste S.r.l. 35
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Forward pro pagation case

Step 1.

As elements in x;, W; is mutually independent
Var|y;| = ngVar|wa;] (1)

Zero mean w, variance of product of independent variables gives

Var(y;] = ny Var[uwy) E[?] (2)

Step 2.

Let wy_; have symmetric dist. around zero and b;_; = 0
(can be achieved by the initialization), if f(.) is ReLU,

E[;i??] — %VGF:LU,{_1: (3)

Step 3.

Put (3) into (2) and consider L layer

L
. 1
Varlyr,| = Var{y] (H 5T ‘-&H'[u;g])

=2 =

yi = Wix; + by
X] = f(YI—l)

37



Forward pro pagation case

L
. 1
Varlyr,] = Var{yi] (H 5 Hu-[u;g])

=2 ~

If this term is 1, variance is consistent over layers = S Var|w;] =1

It leads to Gaussian with 0 mean, \/nz std. (bias=0)
l

This is the Kaiming initialization !

(derived from forward-propagation)

38



Backward propagation case

Consider gradients with notations

;"i\Xg = ﬁ\-’rg & V.

Skip derivational details
(The procedure is similar)

E ng Var u,;])

l

Should be ‘1’

l

It leads to Gaussian with 0 mean, \/ﬁz std. (bias=0)
l

€--—- ===

Var[Az;| = Var[Azp41] (

ME“

This is also the Kaiming initialization !
(derived from backward-propagation)

39



Forward eq. vs Backward eq.

Kaiming He init.

Forward case Backward case
o 2 2
Standar deviation — — .
. . n n c;=d
in Gaussian l l l -1



Forward eq. vs Backward eq.

Kaiming He init.

Forward case Backward case
. 2 2
Standar deviation — —
in Gaussian n; n
1,2 ~ _ 12
(n; =kjcp) (h; = k;d;)

It is sufficent to use one of the two.
L
. 2 1 7y . .
using |—as std for example, H 5 Vai [wi]  in forward case equation
l

)

C . . . . .
become d—z, which is not a diminishing number
L

* I
c=dj_4

41



The results

0.B5

0.8

Emar

D85

o0.e

D.75

ImageNet classification task

085+

0.8+

E 0.B5 |

— %ﬁglf’ﬂr[m] =1 ours Id\""-.v,"ﬁ'uwl naf

Ul'n,-'
——- fjVarw;] =1 Xavier ,\'ﬁ'— 0.75 -
0.5 : re 2 25 3
Epoch
CNN with 22 layer

-

1
—_ Eﬁl'l-’ar[w!] =1 ours

——= fiVarlw;| =1 Xavier

CNN with 30 layer

mmm) (Gradient diminishing in Xavier
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Discussion

* [nitialization and activation should be PAIRED

Xavier : symmetric (tanh, softsign)
Kaiming : ReLU-like

* Use Kaiming for extremely deeper networks.

» For Kaiming initialization, excessive increase/decrease of number of filters
(or channels) in CNN may be undesirable
(as variance preservation doesn’t hold for back and forward at the same time)



Thank you !

MDeS

Machine Intelligence & Data Science Lab.




Appendix A. variance of product

If two variables X and Y are independent, the variance of their product is given by
Var(XY) = [E(X)]? Var(Y) + [E(Y)]? Var(X) + Var(X) Var(Y).
Equivalently, using the basic properties of expectation, it is given by

Var(XY) = E(X*) E(Y?) — [E(X)*[E(Y)].
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Appendix B. Gaussian vs Uniform

Graph for error loss

Note 1. [1] compared a Gaussian distribution to a uniform distribution and
found differences on the conditioning of the Jacobian matrix of a neural
network, but found no relation to the convergence speed

a 10 20 30 40 50
Epoch number

(a) validation error

Graph for accuracy

Note 2. Extensive experiments are given in [2]
(seems no difference for me)

BCCUMaCy
=
i
-3

085

a 10 20 30 40 50
Epoch number

(b) validation accuracy
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